Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 99(19): 190402, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-18233049

RESUMO

We revisit a classic study [D. S. Hall, Phys. Rev. Lett. 81, 1539 (1998)10.1103/PhysRevLett.81.1539] of interpenetrating Bose-Einstein condensates in the hyperfine states |F=1,m{f}=-1 identical with |1 and |F=2,m{f}=+1 identical with |2 of 87Rb and observe striking new nonequilibrium component separation dynamics in the form of oscillating ringlike structures. The process of component separation is not significantly damped, a finding that also contrasts sharply with earlier experimental work, allowing a clean first look at a collective excitation of a binary superfluid. We further demonstrate extraordinary quantitative agreement between theoretical and experimental results using a multicomponent mean-field model with key additional features: the inclusion of atomic losses and the careful characterization of trap potentials (at the level of a fraction of a percent).

2.
Phys Rev Lett ; 87(22): 227205, 2001 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-11736425

RESUMO

In magnetic fields applied parallel to the anisotropy axis, the relaxation of the magnetization of Mn(12)-acetate measured for different sweep rates collapses onto a single scaled curve. The form of the scaling implies that the dominant symmetry-breaking process responsible for tunneling is a locally varying second-order transverse anisotropy, forbidden by tetragonal symmetry in the perfect crystal, which gives rise to a broad distribution of tunnel splittings in a real crystal of Mn(12) acetate. Different forms applied to even- and odd-numbered steps provide a clear distinction between even resonances (associated with crystal anisotropy) and odd resonances (which require a transverse magnetic field).

3.
Phys Rev Lett ; 87(8): 086401, 2001 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-11497966

RESUMO

For a broad range of electron densities n and temperatures T, the in-plane magnetoconductivity of the two-dimensional system of electrons in silicon MOSFETs can be scaled onto a universal curve with a single parameter H(sigma)(n,T), where H(sigma) obeys the empirical relation H(sigma) = A(n) [Delta(n)(2)+T2](1/2). The characteristic energy k(B)Delta associated with the magnetic field dependence of the conductivity decreases with decreasing density, and extrapolates to 0 at a critical density n(0), signaling the approach to a zero-temperature quantum phase transition. We show that H(sigma) = AT for densities near n(0).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA