Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 673: 373-385, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38878372

RESUMO

Smart nanocarrier-based bioactive delivery systems are a current focus in nanomedicine for allowing and boosting diverse disease treatments. In this context, the design of hybrid lipid-polymer particles can provide structure-sensitive features for tailored, triggered, and stimuli-responsive devices. In this work, we introduce hybrid cubosomes that have been surface-modified with a complex of chitosan-N-arginine and alginate, making them pH-responsive. We achieved high-efficiency encapsulation of acemannan, a bioactive polysaccharide from Aloe vera, within the nanochannels of the bioparticle crystalline structure and demonstrated its controlled release under pH conditions mimicking the gastric and intestinal environments. Furthermore, an acemannan-induced phase transition from Im3m cubic symmetry to inverse hexagonal HII phase enhances the bioactive delivery by compressing the lattice spacing of the cubosome water nanochannels, facilitating the expulsion of the encapsulated solution. We also explored the bioparticle interaction with membranes of varying curvatures, revealing thermodynamically driven affinity towards high-curvature lipid membranes and inducing morphological transformations in giant unilamellar vesicles. These findings underscore the potential of these structure-responsive, membrane-active smart bioparticles for applications such as pH-triggered drug delivery platforms for the gastrointestinal tract, and as modulators and promoters of cellular internalization.

2.
Mol Biol Res Commun ; 13(2): 55-63, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504784

RESUMO

Herein, a detailed molecular phylogeny analysis was developed to determine the phylogenetic position of a new freshwater histozoic myxosporean cnidarian, Henneguya markiana sp. nov. from the world's largest tropical wetland area, Pantanal, Brazil. The new species is described using an integrative taxonomy approach including morphology, biological traits and molecular data. Phylogenetic analysis inferred by Maximum Likehood method showed the new Henneguya species in a well-supported clade of myxosporean gill parasites of South American characids fishes. In this same clade, the new Henneguya described appeared in a sub-clade clustering with H. lacustris and H. chydadea. Nevertheless, the sequences of the new species and H. lacustris and H. chydadea have a large genetic divergence of 10.4% (148 nucleotides-nt) and 10.5% (147 nt) respectively. To the best of our knowledge, this is the first report of a cnidarian myxosporean species parasitizing a fish from Stevardiinae from South America. In the light of the differences observed from the integrative taxonomy, we are confident that this isolate is a new species of Henneguya, increasing the knowledge of diversity of this enigmatic group of cnidarians.

3.
Pharmaceutics ; 16(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38276511

RESUMO

Nanovesicles produced with lipids and polymers are promising devices for drug and bioactive delivery and are of great interest in pharmaceutical applications. These nanovesicles can be engineered for improvement in bioavailability, patient compliance or to provide modified release or enhanced delivery. However, their applicability strongly depends on the safety and low immunogenicity of the components. Despite this, the use of unsaturated lipids in nanovesicles, which degrade following oxidation processes during storage and especially during the proper routes of administration in the human body, may yield toxic degradation products. In this study, we used a biopolymer (chitosan) labeled with flavonoid (catechin) as a component over a lipid bilayer for micro- and nanovesicles and characterized the structure of these vesicles in oxidation media. The purpose of this was to evaluate the in situ effect of the antioxidant in three different vesicular systems of medium, low and high membrane curvature. Liposomes and giant vesicles were produced with the phospholipids DOPC and POPC, and crystalline cubic phase with monoolein/DOPC. Concentrations of chitosan-catechin (CHCa) were included in all the vesicles and they were challenged in oxidant media. The cytotoxicity analysis using the MTT assay (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) revealed that concentrations of CHCa below 6.67 µM are non-toxic to HeLa cells. The size and zeta potential of the liposomes evidenced the degradation of their structures, which was minimized by CHCa. Similarly, the membrane of the giant vesicle, which rapidly deteriorated in oxidative solution, was protected in the presence of CHCa. The production of a lipid/CHCa composite cubic phase revealed a specific cubic topology in small-angle X-ray scattering, which was preserved in strong oxidative media. This study demonstrates the specific physicochemical characteristics introduced in the vesicular systems related to the antioxidant CHCa biopolymer, representing a platform for the improvement of composite nanovesicle applicability.

4.
Biomater Adv ; 153: 213525, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37352744

RESUMO

The upsurge of bacterial resistance to conventional antibiotics turned a well-recognized public health threat. The need of developing new biomaterials of effective practical use in order to tackle bacterial resistance became urgent. In this study, a submicrometric bioparticle of known antibacterial activity was produced in powder form with suitable texture and appealing characteristics for effective oral administration. Through complex coacervating a natural-source antimicrobial polypeptide with chitosan-N-arginine and alginate, the bioactive polypeptide was physically incorporated to the bioparticle whose structure positively responds to the pH variations found in gastrointestinal tract. The powder formulation presented high palatability that was evaluated using fish as in vivo animal model. A thorough survey of the fish intestinal tissues, following a systematic oral administration, revealed high penetration potential of the biomaterial through epithelial cells and deeper intestine layers. Despite, no cytotoxic effect was observed in analyzing the tissues through different histology methods. The absence of intestinal damage was corroborated by immune histochemistry, being the integrity of epithelial motor myosin Vb and related traffic proteins preserved. Hematology further endorsed absence of toxicity in blood cells whose morphology was evaluated in detail. The study evidenced the applicability potential of a new biomaterial of appealing and safe oral administration of antibacterial polypeptide.


Assuntos
Antibacterianos , Peptídeos , Peptídeos/química , Peptídeos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Administração Oral , Pós/química , Peixes-Gato , Animais , Tamanho da Partícula , Concentração de Íons de Hidrogênio
5.
J Mater Chem B ; 11(11): 2490-2503, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36852541

RESUMO

Nano-structured and functionalized materials for encapsulation, transport, targeting and controlled release of drugs are of high interest to overcome low bioavailability in oral administration. We develop lipid-based cubosomes, which are surface-functionalized with biocompatible chitosan-N-arginine and alginate, displaying internal liquid crystalline structures. Polyelectrolyte-shell (PS) cubosomes have pH-responsive characteristics profitable for oral delivery. The obtained PScubosomes can strongly interact with serum albumin, a protein which is released in the stomach under gastric cancer conditions. An effective thermodynamic PScubosome-protein interaction was characterized at pH 2.0 and 7.4 by isothermal titration calorimetry at 37 °C. A high increment of the albumin conformation transition temperature was evidenced by differential scanning calorimetry upon incubation with PScubosomes. The performed structural studies by synchrotron small-angle X-ray scattering (SAXS) revealed essential alterations in the internal liquid crystalline topology of the nanocarriers including an Im3m to Pn3m transition and a reduction of the cubic lattice parameters. The PScubosome nanoparticle interaction with serum albumin, leading to inner structural changes in a range of temperatures, promoted the release of water from the cubosomal nanochannels. Altogether, the results revealed effective interactions of the PScubosomes with albumin under simulated gastrointestinal pH conditions and suggested promising nanocarrier characteristics for triggered oral drug release.


Assuntos
Neoplasias Gastrointestinais , Albumina Sérica , Humanos , Liberação Controlada de Fármacos , Polieletrólitos , Espalhamento a Baixo Ângulo , Difração de Raios X
6.
ACS Biomater Sci Eng ; 9(6): 2911-2923, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-34779601

RESUMO

Nanodelivery of drugs aims to ensure drug stability in the face of adverse biochemical conditions in the course of administration, concomitant with appropriate pharmacological action provided by delivery at the targeted site. In this study, the application potential of a nanoparticle produced with biopolymers chitosan-N-arginine and alginate as an oral drug delivery material is evaluated. Both macromolecules being weak polyelectrolytes, the nanoparticle presents strong thermodynamic interactions with a biological model membrane consisting of a charged lipid liposome bilayer, leading to membrane disruption and membrane penetration of the nanoparticles in ideal conditions of pH corresponding to the oral route. The powder form of the nanoparticle was obtained by lyophilization and with a high percentage of entrapment of the anthelmintic drug praziquantel. In vivo studies were conducted with oral administration to Corydoras schwartzi fish with high intensity of intestinal parasites infection. The in vivo experiments confirmed the mucoadhesive and revealed membrane-penetrating properties of the nanoparticle by translocating the parasite cyst, which provided target drug release and reduction of over 97% of the fish intestinal parasites. Thus, it was evidenced that the nanoparticle was effective in transporting and releasing the drug to the target, providing an efficient treatment.


Assuntos
Quitosana , Nanopartículas , Parasitos , Animais , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Nanopartículas/química
7.
Pharmaceutics ; 14(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36559240

RESUMO

The development of biomaterials to enable application of antimicrobial peptides represents a strategy of high and current interest. In this study, a bioparticle was produced by the complexation between an antimicrobial polypeptide and the biocompatible and biodegradable polysaccharides chitosan-N-arginine and alginate, giving rise to a colloidal polyelectrolytic complex of pH-responsive properties. The inclusion of the polypeptide in the bioparticle structure largely increases the binding sites of complexation during the bioparticles production, leading to its effective incorporation. After lyophilization, detailed evaluation of colloidal structure of redispersed bioparticles evidenced nano or microparticles with size, polydispersity and zeta potential dependent on pH and ionic strength, and the dependence was not withdrawn with the polypeptide inclusion. Significant increase of pore edge tension in giant vesicles evidenced effective interaction of the polypeptide-bioparticle with lipid model membrane. Antibacterial activity against Aeromonas dhakensis was effective at 0.1% and equal for the isolated polypeptide and the same complexed in bioparticle, which opens perspectives to the composite material as an applicable antibacterial system.

8.
Pathogens ; 11(10)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36297176

RESUMO

Myxozoans are a diverse group of parasitic cnidarians of wide distribution. A new species, Myxobolus matogrossoensis n. sp., is herein described infecting wild specimens of tetra mato-grosso Hyphessobrycon eques, caught in the Pantanal biome, the world's largest tropical wetland area. Cysts were found in 3 of the 30 examined fishes. Mature myxospores were ovoid in shape in frontal and measured 6.6 ± 0.4 µm (6.2-7.0 µm) in length and 3.5 ± 0.2 µm (3.3-3.7 µm) in width. The two polar capsules were elongated in shape, equal in size and occupying almost half of the myxospore body. They measured 3.3 ± 0.2 µm (3.1-3.5 µm) in length and 1.8 ± 0.1 µm (1.7-1.9 µm) in width. The polar tubules presented three to four turns. Phylogenetic analysis placed the new species within a clade containing myxobolid species from South American characiforms fish and appears as a close species of Myxobolus piraputangae and Myxobolus umidus. Nevertheless, the sequences of the new species and P. umidus and P. piraputangae have a large genetic divergence of 12 and 12.2% in their 18S rDNA gene, respectively. To the best of our knowledge, this is the first report of a Myxobolus species parasitizing the tetra fish mato-grosso, thus increasing our knowledge of cnidarian myxosporean diversity from South America.

9.
Tissue Cell ; 79: 101909, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36095932

RESUMO

Myxosporeans are a diverse group of microscopic cnidarians of wide distribution that evolved into a parasitic lifestyle. A new myxosporean species, Myxobolus sp., is herein described infecting the mandible of wild specimens of Synbranchus marmoratus, caught in the world's largest tropical wetland area, Pantanal, Brazil. Light, scanning, transmission electron microscopy and histological observations unveiled detailed taxonomic information of the new myxosporean cnidarian. Ultrastructural analysis revealed a detailed description of plasmodia structures which can be used for comparison with plasmodia from other species of myxobolids. Both histological and ultrastructural observations evidenced a connective tissue capsule surrounding the plasmodia of Myxobolus sp. as a histopathological host reaction to the infection of this parasitic cnidarian. Histology showed that tissue tropism of the new myxosporean occurs in a well-defined part of the mandible, with development of plasmodia occurring in the epidermis layer. Mature myxospores from the valvular view featured an ovoid shape and had a short prolongation of the spore valves in the posterior end. Myxospores measured 22.7 ± 1.2 µm (21.5-23.9 µm) in length, 12.5 ± 0.4 µm (12.1-12.9 µm) in width and 11.3 ± 0.5 (10.8-11.8 µm) in thickness. Polar capsules were pyriform equally-sized and measuring 4.6 ± 0.3 µm (3.9-4.3 µm) in length and 2.9 ± 0.1 µm in width (2.8-3.0 µm). Finally, this study substantiates the still hidden myxosporean diversity from South America.


Assuntos
Cnidários , Doenças dos Peixes , Myxobolus , Doenças Parasitárias em Animais , Smegmamorpha , Animais , Doenças Parasitárias em Animais/parasitologia , Áreas Alagadas , Brasil , Doenças dos Peixes/parasitologia , Filogenia , Myxobolus/ultraestrutura , Brânquias
10.
J Colloid Interface Sci ; 607(Pt 1): 440-450, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34509118

RESUMO

We report a strategy for sustainable development of pH-responsive cubic liquid crystalline nanoparticles (cubosomes), in which the structure-defining lyotropic nonlamellar lipid and the eventually encapsulated guest molecules can be protected by pH-sensitive polyelectrolyte shells with mucoadhesive properties. Bulk non-lamellar phases as well as pH-responsive polyelectrolyte-modified nanocarriers were formed by spontaneous assembly of the nonlamellar lipid monoolein and two biopolymers tailored in nanocomplexes with pH-dependent net charge. The mesophase particles involved positively charged N-arginine-modified chitosan (CHarg) and negatively charged alginate (ALG) chains assembled at different biopolymer concentrations and charge ratios into a series of pH-responsive complexes. The roles of Pluronic F127 as a dispersing agent and a stabilizer of the nanoscale dispersions were examined. Synchrotron small-angle X-ray scattering (SAXS) investigations were performed at several N-arginine-modified chitosan/alginate ratios (CHarg/ALG with 10, 15 and 20 wt% ALG relative to CHarg) and varying pH values mimicking the pH conditions of the gastrointestinal route. The structural parameters characterizing the inner cubic liquid crystalline organizations of the nanocarriers were determined as well as the particle sizes and stability on storage. The surface charge variations, influencing the measured zeta-potentials, evidenced the inclusion of the CHarg/ALG biopolymer complexes into the lipid nanoassemblies. The polyelectrolyte shells rendered the hybrid cubosome nanocarriers pH-sensitive and influenced the swelling of their lipid-phase core as revealed by the acquired SAXS patterns. The pH-responsiveness and the mucoadhesive features of the cubosomal lipid/polyelectrolyte nanocomplexes may be of interest for in vivo drug delivery applications.


Assuntos
Cristais Líquidos , Síncrotrons , Biopolímeros , Concentração de Íons de Hidrogênio , Lipídeos , Espalhamento a Baixo Ângulo , Difração de Raios X
11.
J Fish Dis ; 44(11): 1819-1829, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34339060

RESUMO

Parasite infections in fish require constant surveillance and strategies for efficient treatments which guarantee the fish health, their sale value and the non-propagation of pathogens in new environments. Fish treatments based on nanotechnology become of increasing interest since nanoparticles have been shown as efficient materials for optimizing administration of bioactives. In this study a chitosan derivative, alginate and praziquantel conjugated nanobioparticle of effective action for oral treatment of digenetic trematodes in highly infected Corydoras schwartzi was evaluated in terms of histological and hematological safety. The inherent absence of alterations in intestinal tissue and the reversible blood cells counting during a period up to 35 days showed the safety of the drug delivery nanobioparticles, which thus represent a promising strategy for effective applications in pathogens treatments by oral administration.


Assuntos
Peixes-Gato/parasitologia , Doenças dos Peixes/tratamento farmacológico , Nanopartículas , Praziquantel/administração & dosagem , Infecções por Trematódeos/veterinária , Administração Oral , Alginatos , Animais , Quitosana , Portadores de Fármacos , Doenças dos Peixes/parasitologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Trematódeos/efeitos dos fármacos , Infecções por Trematódeos/tratamento farmacológico
12.
Heliyon ; 7(1): e05820, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33426351

RESUMO

The FDA-approved drug ivermectin is applied for treatments of onchocerciasis and lymphatic filariasis. The anti-cancer and anti-viral activities have been demonstrated stressing possibilities for the drug repurposing and therefore new information on high dosage safety is on demand. We analyzed in vivo tissue responses for high doses of ivermectin using Corydoras fish as animal model. We made intestinal histology and hematologic assays after oral administration of ivermectin transported with polyelectrolytes formulation. Histology showed any apparent damage of intestinal tissues at 0.22-170 mg of ivermectin/kg body weight. Immunofluorescence evidenced delocalization of Myosin-Vb at enterocytes only for the higher dose. Hematology parameters showed random variations after 7 days from administration, but a later apparent recover after 14 and 21 days. The study evaluated the potential of high doses of oral administration of ivermectin formulation, which could be an alternative with benefits in high compliance therapies.

13.
Microb Pathog ; 150: 104718, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33385492

RESUMO

A new cnidarian myxosporean infecting the spleen of an economic and ecological important bryconid fish (Salminus franciscanus) is described based on integrative taxonomic approach including morphological, ultrastructural, biological traits, geography, molecular data and phylogenetic analysis. In a total of thirty specimens examined, nineteen (63.3%) were infected by an undescribed parasite species belonging to the genus Myxobolus. Plasmodial development was asynchronous, with young development in the periphery and mature myxospores in the central area and without projections and microvilli in the plasmodial wall. Mature myxospores were ovoid in shape and measured 7.9 ± 0.2 µm (7.6-8.1 µm) in length and 5.4 ± 0.1 µm (5.0-5.6 µm) in width. The two polar capsules were equal in size, occupying a little more than half of the myxospore body, measuring 4.0 ± 0.2 µm (3.9-4.1 µm) in length and 1.7 ± 0.1 µm (1.5-1.8 µm) in width. The polar tubules coiled in six turns, perpendicular to the long axis of polar capsule. Phylogenetic analysis placed the new species within a clade containing nine myxobolid species from South American characiforms fish and appears as a close species of Myxobolus pantanalis. Nevertheless, the sequences of the new species and M. pantanalis have a large genetic divergence of 13.5% in their SSU rDNA. In light of the differences observed from the integrative taxonomy, we confidently considered that this isolate is a new species of cnidarian myxosporean, M. douradae n. sp., increasing the knowledge of diversity of this enigmatic group of cnidarians.


Assuntos
Cnidários , Doenças dos Peixes , Doenças Parasitárias em Animais , Animais , Brasil , Brânquias , Filogenia , Baço
14.
Microb Pathog ; 147: 104372, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32652114

RESUMO

A new myxozoan species belonging to the genus Henneguya was isolated from the serous membrane of the visceral cavity of the hognosed catfish Brochis multiradiatus from Peruvian Amazon. Whitish plasmodia, macroscopically visible, were found in four of the thirty examined fishes. Mature myxospores were ellipsoidal in shape in frontal view and had a total length of 44.5 ± 0.6 µm (43.9-45.1), spore body measured 18.7 ± 0.9 µm (16.8-19.6) in length, 7.1 ± 0.2 µm (6.6-7.4) in width and 5.5 ± 0.3 µm (4.9-5.6) in thickness. The two polar capsules were elongated and equal in size, measuring 9.1 ± 0.1 µm (8.8-9.4) in length and 1.7 ± 0.1 µm (1.6-1.8) in width, occupying half of the myxospore body. Polar tubules coiled in 10-11 turns perpendicular to the long axis of the polar capsule. The caudal appendage was not bifurcated and measured 25.8 ± 0.6 µm (24.7-26.5) in length. The sequencing of the 18S rDNA gene resulted in 1400 bp and this sequence did not match any of the myxozoans available in GenBank. Phylogenetic analysis placed the new species in a well-supported subclade of Henneguya spp. infecting callichthyid fishes, with Henneguya loretoensis being the closest species. This study is the first description of a myxozoan species, Henneguya multiradiatus n. sp. from a fish of the genus Brochis.


Assuntos
Peixes-Gato , Cnidários , Doenças dos Peixes , Myxozoa , Parasitos , Doenças Parasitárias em Animais , Animais , DNA Ribossômico/genética , Brânquias , Myxozoa/genética , Peru , Filogenia
15.
Colloids Surf B Biointerfaces ; 193: 111131, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32512370

RESUMO

In order to make more efficient chitosan-based nanoparticles for transfection in physiological condition, chitosomes composed of chitosan modified with arginine and complexed with DOTAP/DOPE lipids are synthesized (named chitosomes) by reverse phase evaporation technique. Structure analyses of chitosomes with or without plasmid DNA (pDNA) are performed by electrophoresis, zeta potential, dynamic light scattering, small angle X-ray scattering and isothermal titration calorimetry, and transfection efficiency and cytotoxicity are performed in HEK293 T cells. Chitosomes have a positive surface charge (X¯= 52 mV) with an average size of 116 nm, and interaction with pDNA are favored thermodynamically and do not suffer aggregation significantly. In our experimental conditions, the transfection efficiency average reaches 86% ±â€¯3, while the Lipofectamine® reaches 87% ±â€¯5 in vitro. Cytotoxicity of chitosomes are tolerable. Structural analyses show that that chitosomes-pDNA complexes appear to have multilamellar vesicle structures hosting pDNA in-between bilayers which favor interaction with cell membrane and delivery of pDNA. Results show that synthesized chitosomes are promising carriers for gene delivery.


Assuntos
Arginina/química , Quitosana/química , DNA/química , Técnicas de Transferência de Genes , Arginina/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quitosana/farmacologia , DNA/genética , Células HEK293 , Humanos , Lipossomos/química , Lipossomos/farmacologia , Estrutura Molecular , Tamanho da Partícula , Plasmídeos , Propriedades de Superfície
16.
Acta Trop ; 210: 105545, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32502480

RESUMO

A new Myxobolus species is described infecting gill filaments of the endangered ornamental fish Otocinclus cocama from Peruvian Amazon. In a total of 35 fish examined, five (14.3%) had myxozoan plasmodia. Taxonomic analysis was performed integrating multiple characters, including morphometrical, biological traits, ssrDNA sequence data and host ecological characters. Myxospores of M. iquitoensis n. sp. were ovoid in shape from the frontal view and measured 17.6±1.2 µm (16.2-19.8 µm) in length and 10.5±0.7 µm (9.8-12 µm) in width. The two polar capsules were elongate in shape, equal in size and occupying almost half of the myxospore body. They measured 8.7±0.4 µm (6.9-9.3 µm) in length and 3.3±0.2 µm (3-3.6 µm) in width. The polar tubules presented six to seven turns. Molecular phylogenetic analysis revealed that the obtained ssrDNA sequence did not match any existing sequences in GenBank but showed M. iquitoensis n. sp. to be a close species of M. figueirae. Nonetheless, the ssrDNA sequences of those species show large genetic divergence. This is the first description and phylogenetic study of a myxozoan parasitizing fish of the genus Otocinclus from South America, as well the first report of these parasites infecting a fish belonging to the Loricariidae family from Amazon basin. Considering the endangered status of the host, the high degree of host-specificity of freshwater histozoic myxobolids, the low occurrence shown by the new myxozoan, and the fact that this is the only host known for this myxozoan, the conservation status of the new species of myxozoan is likely to be connected to the future survival of its host.


Assuntos
Doenças dos Peixes/parasitologia , Myxobolus/genética , Animais , Água Doce , Brânquias/parasitologia , Myxobolus/classificação , Doenças Parasitárias em Animais/parasitologia , Peru , Filogenia , América do Sul
17.
Nanomaterials (Basel) ; 10(5)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443582

RESUMO

Nanostructure bicontinuous cubic phase self-assembled materials are receiving expanding applications as biocompatible delivery systems in various therapeutic fields. The functionalization of cubosome, spongosome, hexosome and liposome nanocarriers by pH-sensitive lipids and/or pH-sensitive polymer shells offers new opportunities for oral and topical drug delivery towards a new generation of cancer therapies. The electrochemical behavior of drug compounds may favor pH-triggered drug release as well. Here, we highlight recent investigations, which explore the phase behavior of mixed nonlamellar lipid/fatty acid or phospholipid systems for the design of pH-responsive and mucoadhesive drug delivery systems with sustained-release properties. X-ray diffraction and small-angle X-ray scattering (SAXS) techniques are widely used in the development of innovative delivery assemblies through detailed structural analyses of multiple amphiphilic compositions from the lipid/co-lipid/water phase diagrams. pH-responsive nanoscale materials and nanoparticles are required for challenging therapeutic applications such as oral delivery of therapeutic proteins and peptides as well as of poorly water-soluble substances. Perspective nanomedicine developments with smart cubosome nanocarriers may exploit compositions elaborated to overcome the intestinal obstacles, dual-drug loaded pH-sensitive liquid crystalline architectures aiming at enhanced therapeutic efficacy, as well as composite (lipid/polyelectrolyte) types of mucoadhesive controlled release colloidal cubosomal formulations for the improvement of the drugs' bioavailability.

18.
J Fish Dis ; 43(6): 687-695, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32315094

RESUMO

This study compared the in vitro anthelmintic activity of Copaifera reticulata oleoresin (200, 400, 600, 800 and 1,000 mg/L) and of nanoemulsions prepared with this oleoresin (50, 100, 150, 200 and 250 mg/L) against monogeneans on the gills of Colossoma macropomum. The major compounds present in the oleoresin of C. reticulata were γ-macrocarpene (14.2%), α-bergamotene (13.6%), ß-selinene (13.4%) and ß-caryophyllene (11.7%). All concentrations of the nanoemulsion and the oleoresin without nanoformulation showed anthelmintic efficacy against monogeneans, and higher concentrations led to more rapid parasite mortality. Structural damages to the tegument of the parasites exposed to C. reticulata oleoresin were observed with scanning electron microscopy. At two hours of exposure, fish showed 100% tolerance to all nanoemulsion concentrations used in the in vitro assays, whereas 100% mortality was shown in the fish exposed to the oleoresin without nanoformulation after one hour. The results of this study suggest that nanoemulsions with oleoresin of C. reticulata have advantages in the control and treatment of monogenean infections in C. macropomum when compared to the oleoresin without nanoformulation. In addition, since nanoemulsions with the C. reticulata oleoresin are safe to control monogeneans, the efficacy of these nanoformulations may be assayed in therapeutic baths to treat C. macropomum infected by monogeneans.


Assuntos
Antiplatelmínticos/farmacologia , Fabaceae/química , Doenças dos Peixes/tratamento farmacológico , Extratos Vegetais/farmacologia , Trematódeos/efeitos dos fármacos , Infecções por Trematódeos/veterinária , Animais , Compostos Bicíclicos com Pontes/farmacologia , Relação Dose-Resposta a Droga , Emulsões/química , Doenças dos Peixes/parasitologia , Nanoestruturas/química , Sesquiterpenos Policíclicos/farmacologia , Sesquiterpenos de Eudesmano/farmacologia , Tetra-Hidronaftalenos/farmacologia , Infecções por Trematódeos/tratamento farmacológico , Infecções por Trematódeos/parasitologia
19.
Int J Biol Macromol ; 148: 550-564, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31958559

RESUMO

The production of efficient micro and nanoparticles of pH-responsive and mucoadhesive properties is of high scrutiny. We produced a drug carrier bioparticle providing such structural features. Thereby, protonated chitosan bearing chemically bonded arginine was interacted with ionized alginate, leading to the assembling of colloidal particles of specific characteristics. Ideally, the ratio of chitosan-arginine monomers to alginate monomer is 1.6 when the biopolymers are highly charged, providing electrostatic interaction with Gibbs energy compensation around -14 kcal/mol. Both size and surface charge of the bioparticle respond to pH variation, leading to structures of nano to micro hydrodynamic diameters and of positive, nearly neutral and negative zeta potential, with nanoscopic structure changing from mass to surface fractals. The inclusion of two hydrophobic model drugs provided some specific physicochemical features. Following freeze-drying, the bioparticles present both irregular shape and surface morphology, but an overall similar dry structure. An in vivo study of oral administration to teleost fish revealed that the bioparticles attain the intestine mucus and further, the interaction with the intestinal mucosa is timely dependent thanks to the mucoadhesive property. The in vivo study endorsed that the bioparticle provides high compliance to freshwater ornamental fish, highlighting it as a material of promising application.


Assuntos
Alginatos/química , Quitosana/química , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Íons , Algoritmos , Animais , Biopolímeros/química , Portadores de Fármacos/química , Peixes , Modelos Químicos , Estrutura Molecular , Nanopartículas/química , Nanopartículas/ultraestrutura , Análise Espectral , Termodinâmica
20.
Acta Trop ; 187: 207-213, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30107151

RESUMO

Myxosporean are endoparasitic cnidarians of wide distribution and responsible for important economic losses in fisheries and aquaculture. A new myxosporean species, Henneguya peruviensis n. sp., is herein described as obtained from the gill filaments of Hyphessobrycon loretoensis caught in the Nanay River, Department of Loreto, Peru. The parasite was found in 37 of 45 (82.2%) examined H. loretoensis. The new species was characterized based on morphological features and 18S rDNA gene sequence data. The sequencing of the 18S rDNA gene from the spores of H. peruviensis n. sp. resulted in 1632 nucleotides and this sequence did not match any of the myxozoan available in the GenBank. Phylogenetic analysis showed that H. peruviensis n. sp. closed together with H. leporinicola. Nonetheless, the 18S rDNA sequences of H. peruviensis n. sp. and H. leporinicola have only 82% similarity. This is the first description and molecular study of a Myxozoa parasitizing fish of the genus Hyphessobrycon in the Amazon basin. Given the importance of the ornamental fish industry in translocation of aquatic organisms worldwide, the international movement of myxosporeans in infected fish is discussed in terms of disease outbreaks and the need for preventative action.


Assuntos
Characidae/parasitologia , DNA Ribossômico/genética , Doenças dos Peixes/parasitologia , Brânquias/parasitologia , Myxozoa/genética , Animais , Aquicultura , Peixes/parasitologia , Myxozoa/anatomia & histologia , Peru , Filogenia , Rios , Esporos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...