Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomech Model Mechanobiol ; 22(1): 281-295, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36305993

RESUMO

Osteoporosis and disuse can cause bone loss which reduces the weight-bearing strength of long bones. Physical exercise or mechanical loading prevents bone loss as it promotes bone modeling through osteogenesis, i.e., new bone formation. Several studies have observed distinct bone remodeling responses to physical exercises; nevertheless, the underlying mechanism behind such responses is not well established. Loading-induced pore-pressure and fluid motion act as mechanobiological stimuli to bone cells namely osteocytes which further initiate osteoactivities. The shape of loading waveforms also affects the poromechanical environment of bone. Accordingly, the present study hypothesizes that loading waveforms associated with physiological exercises may expose the bone to different mechanobiological stimuli resulting in distinct bone remodeling. A poromechanical finite element model is developed to compute pore-pressure and interstitial fluid velocity in femoral cortical bone tissue (healthy and osteoporotic) subjected to loading waveforms of three physiological exercises namely walking, running, and jumping. The model also computes the mechanobiological stimulus as a function of fluid velocity. The outcomes indicate that pore-pressure and fluid velocity decrease significantly in osteoporotic bone tissue in comparison with healthy tissue. Jumping and running both improve pore-pressure and fluid velocity in healthy and osteoporotic tissues, whereas running significantly enhances mechanobiological stimulus in both the tissues which indicates a possible explanation for distinct bone remodeling to different physical exercises. The present work also suggests that running may be recommended as a potential biomechanical therapeutic to prevent bone loss. Overall, the present work contributes to the area of orthopedic research to develop effective designs of prophylactic exercises to improve bone health.


Assuntos
Modelos Biológicos , Osteogênese , Humanos , Caminhada , Simulação por Computador , Remodelação Óssea/fisiologia
2.
Materials (Basel) ; 14(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34683784

RESUMO

Difficulty in debris removal and the transport of fresh dielectric into discharge gap hinders the process performance of electrical discharge machining (EDM) process. Therefore, in this work, an economical low frequency vibration platform was developed to improve the performance of EDM through vibration assistance. The developed vibratory platform functions on an eccentric weight principle and generates a low frequency vibration in the range of 0-100 Hz. The performance of EDM was evaluated in terms of the average surface roughness (Ra), material removal rate (MRR), and tool wear rate (TWR) whilst varying the input machining parameters viz. the pulse-on-time (Ton), peak current (Ip), vibration frequency (VF), and tool rotational speed (TRS). The peak current was found to be the most significant parameter and contributed by 78.16%, 65.86%, and 59.52% to the Ra, MRR, and TWR, respectively. The low frequency work piece vibration contributed to an enhanced surface finish owing to an improved flushing at the discharge gap and debris removal. However, VF range below 100 Hz was not found to be suitable for the satisfactory improvement of the MRR and reduction of the TWR in an electrical discharge drilling operation at selected machining conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...