Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invertebr Biol ; 134(1): 61-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25834379

RESUMO

By controlling the traction between its body and the tube wall, a tube-dwelling polychaete can move efficiently from one end of its tube to the other, brace its body during normal functions (e.g., ventilation and feeding), and anchor within its tube avoiding removal by predators. To examine the potential physical interaction between worms and the tubes they live in, scanning electron microscopy was used to reveal and quantify the morphology of worm bodies and the tubes they produce for species representing 13 families of tube-dwelling polychaetes. In the tubes of most species there were macroscopic or nearly macroscopic (∼10 µm-1 mm) bumps or ridges that protruded slightly into the lumen of the tube; these could provide purchase as a worm moves or anchors. At this scale (∼10 µm-1 mm), the surfaces of the chaetal heads that interact with the tube wall were typically small enough to fit within spaces between these bumps (created by the inward projection of exogenous materials incorporated into the tube wall) or ridges (made by secretions on the interior surface of the tube). At a finer scale (0.01-10 µm), there was a second overlap in size, usually between the dentition on the surfaces of chaetae that interact with the tube walls and the texture provided by the secreted strands or microscopic inclusions of the inner linings. These linings had a surprising diversity of micro-textures. The most common micro-texture was a "fabric" of secreted threads, but there were also orderly micro-ridges, wrinkles, and rugose surfaces provided by microorganisms incorporated into the inner tube lining. Understanding the fine structures of tubes in conjunction with the morphologies of the worms that build them gives insight into how tubes are constructed and how worms live within them.

2.
Oecologia ; 114(2): 263-273, 1998 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28307941

RESUMO

Ecological theory suggests that the impact of predation can be strongly modified by the existence of regions of the environment in which prey are less accessible to predators, which underscores the need for empirical studies examining the factors influencing the availability and importance of such prey refuges. Our study tested whether benthic microhabitats with high flows provide suspension-feeding larval black flies (Simulium␣vittatum) with a spatial refuge in which the negative impact of predatory flatworms (Dugesia dorotocephala) is reduced. We conducted a short-term field experiment in Chester Creek (southeastern Pennsylvania, United States) to examine how the number of black fly larvae inhabiting tile substrates responded to manipulated variations in flatworm abundance and current speed. The abundance of flatworms declined with increasing current speed, thereby creating the potential for sites with high flows to provide larvae with a refuge from these predators. Multiple regression analysis revealed that the final abundance of larvae exhibited a significant negative relationship to flatworm abundance and a significant positive relationship to current speed. After adjusting for variations in elapsed time and initial larval abundance, flow and predators explained 38% of the variation in the rate of change in larval abundance. The positive correlation between larval abundance and flow had two components: a positive, direct effect of flow on larvae, which arises because these food-limited consumers prefer to reside within sites with faster flows where they can feed at higher rates; and a negative effect of flow on predators, and of predators on larvae, which combine to yield a positive indirect effect of flow on larvae. This indirect effect demonstrates the existence of flow-mediated refuges (i.e., microhabitats in which the impact of predation is reduced due to high flows), although the effect accounts for a small proportion of total variation in larval abundance. A consideration of biomechanical relationships suggests that microhabitats with high flows are likely to create prey refuges in a wide range of freshwater and marine benthic environments. In particular, predators will often experience greater dislodgement forces than prey because of their larger size and because they project farther above the bed where current speeds are faster. Moreover, the ability to resist a given dislodgement force may be greater for many prey, especially those that are sessile or semi- sessile.

3.
Evolution ; 41(2): 427-432, 1987 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28568750

RESUMO

We examined the hooked setae of a dominant group of tube-dwellers, the polychaete annelids, and found a pattern of setation that is predictable by tube type, exclusive of worm taxon or orientation; we also demonstrated the mechanical significance of these hooked setae. When tube-dwelling worms belonging to different lineages are pressurized, they resist differentially as a function of the direction in which hooks face. The results are consistent with the hypothesis that hooks are used primarily to resist removal of worms from their tubes, are polyphyletic in origin, and are active agents of resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...