Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 871: 162138, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773912

RESUMO

Hydrochar is a new carbonaceous product obtained via hydrothermal carbonization of wet biomass, such as sludges or digested sludges, which often have disposal problems, also due to the presence of contaminants such as heavy metals. The properties of the hydrochar led to an interest in using it as an amendment, but the agro-environmental properties must be considered for its safe use. Raw hydrochar produced by agro-industrial digestate and relative three acidic post-treated hydrochars (for heavy metals removal) have been assessed considering their effect on phytotoxicity, soil, plant growth, mutagenicity, and genotoxicity. The chemical characterization showed the effect of post-treatment on heavy metals contents reduction, except for Cu content (hydrochar, 650 mg/kg; post-treated hydrochars, 940 mg/kg, 287 mg/kg, and 420 mg/kg). The acidic post-treatment also reduces the phytotoxicity compared to raw hydrochar (the germination index at 16 % of hydrochar concentration was: hydrochar, 61.48 %; post-treated hydrochars, 82.27 %, 58.28 %, and 82.26 %), but the low pH and the impact on N-cycle probably have caused the detrimental effect on plant growth of post-treated hydrochar. No mutagenic activity was observed in bacteria using Ames test, while all the samples induced chromosomal aberrations in plant cells (Allium cepa test). The approach adopted, which considers phytotoxicity, plant growth-soil effects, and mutagenicity/genotoxicity bioassays has been proven effective for a proper evaluation of organic products derived from waste to promote a sustainable and circular recovery of materials.


Assuntos
Alcaloides , Metais Pesados , Esgotos , Metais Pesados/toxicidade , Solo , Biomassa , Carbono
2.
Bioresour Technol ; 330: 124971, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33740584

RESUMO

This study investigates the suitability of continuous hybrid fixed bed anaerobic filter reactor for treating sewage and agro-industrial digestate hydrothermal carbonization (HTC) products; hydrochar and HTC liquor (HTCL). The reactor was operated for 300 days under mesophilic conditions at different organic loading rates (OLR); maximum OLRs of 7.4 and 10 gCOD/L/d were reached while treating HTC liquor and slurry, respectively. 15 g/L hydrochar were added to the reactor as a supplement while treating HTCL solely thus increasing the biogas production up to 153%. The reactor was fed with HTCL and hydrochar with an increasing mixing ratio, and the co-digestion impact was dependent on hydrochar concentrations. The results of the study indicate that the hybrid fixed bed anaerobic filter reactor is a promising anaerobic digestion configuration for treating HTCL and overcoming the HTC upscaling challenges, and the suitability of digestate hydrochar utilization as supplement material for anaerobic digestion.


Assuntos
Biocombustíveis , Esgotos , Anaerobiose , Suplementos Nutricionais
3.
Bioresour Technol ; 314: 123734, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32622280

RESUMO

Hydrothermal carbonization (HTC) was evaluated as a promising treatment to enhance the biomethane potential during anaerobic digestion (AD) of the organic fraction of municipal solid waste (OFMSW). The OFMSW was carbonized at different conditions and HTC products were tested for biomethane potential into AD. Results proved that the use of HTC liquid and slurry into AD led to an increase in biomethane production up to 37% and 363%, respectively, compared to OFMSW. Methane production increased as the HTC process severity decreased, reaching its maximum at 180 °C, 1 h for both HTC products. Energy assessment demonstrated that the combustion of biogas produced by AD of HTC liquid and slurries covers up to 30% and 104% of the HTC thermal demand, respectively. When the energy from hydrochar and biogas combustion was recovered, the process efficiency reached 60%. Hence, HTC coupled with AD demonstrates to be an efficient way to valorize OFMSW.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Anaerobiose , Biocombustíveis/análise , Metano
4.
J Environ Manage ; 259: 110067, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31932267

RESUMO

Research around hydrothermal carbonization (HTC) has seen a huge development in recent years, materializing in the first pilot and industrial plants. Even though HTC reactions are slightly exothermic, the overall process entails energy consumption to both reach operating conditions and tackle heat losses. To face this issue and to develop a zero-energy process, this work proposes an innovative solution: the coupling of an HTC reactor with a solar concentrator, designed to fully cover the HTC energy needs. A 300 ml stainless steel HTC reactor was constructed and positioned on the focus of a parabolic dish concentrator (PDC), consisting of one parabolic mirror of 0.8 m2. To maximize the light absorption, the illuminated side of the HTC reactor was coated with a thin layer of nanostructured copper oxide, realized via electron beam deposition. Then, the effectiveness of the hybrid solar-HTC solution was demonstrated by carrying out an experimental campaign on a residual agro-biomass (grape seeds), which was treated at 180, 220, and 250 °C for 2 h. The coating confers excellent absorbing performances to the system, exhibiting an absorptance of up to 95.6% (at 300 nm wavelength). Heating times, yields, composition, and energy properties of "solar hydrochars" resemble those of studies performed in traditional HTC systems. This research work proves the feasibility of the solar-HTC prototype apparatus and opens the way to the development of a zero-energy solar-HTC technology.


Assuntos
Carbono , Biomassa , Temperatura
5.
Environ Technol ; 41(22): 2946-2954, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30817238

RESUMO

Fenton is one of the advanced oxidation processes that can oxide organic compounds efficiently increasing the dewaterability of sludge. This study reports the optimisation of two reagents, Fe2+ and H2O2, involved in the Fenton process in order to increase sludge dewaterability and solubilisation, which were evaluated in terms of SRF, CST and DS. The study was divided into two sets of tests. First the optimal ratio Fe2+/H2O2 was set varying from 0.5-2.0. Results showed that the best Fe2+/H2O2 was equal to 0.8 corresponding to 2.1 s of CST, 2.1·1013 m kg-1 of SRF and 3.1% of DS. In the second set of tests, the Fe2+/H2O2 ratio was maintained fixed to 0.8 while the concentration of reagents was decreased up to 98% in order to verify the efficiency of the process. Results showed that performing Fenton process with a concentration of H2O2 and Fe2+ of, respectively, 6000 and 5000 mg L-1 the SRF and CST could be reduced up to 88% and 76%, respectively, and a DS equal to 3.1% could be obtained. A reduction in the Fenton reagents down to 300 and 250 mg L-1, respectively, for H2O2 and Fe2+ showed a little decrease in efficiency of the process. However, the Fenton process could be still performed thus obtaining an economic saving.


Assuntos
Peróxido de Hidrogênio , Esgotos , Oxirredução
6.
Waste Manag ; 80: 224-234, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30455003

RESUMO

An olive waste stream mixture, coming from a three phase-continuous centrifugation olive oil mill industry, with a typical wet basis mass composition of olive pulp 39 wt%, kernels 5 wt% and olive mill waste water 56 wt%, was subjected to hydrothermal carbonisation (HTC) at 180, 220 and 250 °C for a 3-hour residence time in a 2-litre stainless steel electrically heated batch reactor. The raw feedstock and corresponding hydrochars were characterised in terms of proximate and ultimate analyses, higher heating values and energy properties. Results showed an increase in carbonisation of samples with increasing HTC severity and an energy densification ratio up to 142% (at 250 °C). Hydrochar obtained at 250 °C was successfully pelletised using a lab scale pelletiser without binders or expensive drying procedures. Energy characterisation (HHV, TGA), ATR-FTIR analysis, fouling index evaluation and pelletisation results suggested that olive mill waste hydrochars could be used as energy dense and mechanical stable bio-fuels. Characterisation of HTC residues in terms of mineral content via induced coupled plasma optical emission spectroscopy (ICP-OES) as well as Total and Dissolved Organic Carbon enabled to evaluate their potential use as soil improvers. Nutrients and polyphenolic compounds in HTC liquid fractions were evaluated for the estimation of their potential use as liquid fertilisers. Results showed that HTC could represent a viable route for the valorisation of olive mill industry waste streams.


Assuntos
Olea , Carbono , Resíduos Industriais , Azeite de Oliva , Solo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...