Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 363(6431)2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30846570

RESUMO

Synchronization of oscillators, a phenomenon found in a wide variety of natural and engineered systems, is typically understood through a reduction to a first-order phase model with simplified dynamics. Here, by exploiting the precision and flexibility of nanoelectromechanical systems, we examined the dynamics of a ring of quasi-sinusoidal oscillators at and beyond first order. Beyond first order, we found exotic states of synchronization with highly complex dynamics, including weak chimeras, decoupled states, traveling waves, and inhomogeneous synchronized states. Through theory and experiment, we show that these exotic states rely on complex interactions emerging out of networks with simple linear nearest-neighbor coupling. This work provides insight into the dynamical richness of complex systems with weak nonlinearities and local interactions.

2.
Sci Rep ; 7: 40642, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098166

RESUMO

The topology and dynamics of a complex network shape its functionality. However, the topologies of many large-scale networks are either unavailable or incomplete. Without the explicit knowledge of network topology, we show how the data generated from the network dynamics can be utilised to infer the tempo centrality, which is proposed to quantify the influence of nodes in a consensus network. We show that the tempo centrality can be used to construct an accurate estimate of both the propagation rate of influence exerted on consensus networks and the Kirchhoff index of the underlying graph. Moreover, the tempo centrality also encodes the disturbance rejection of nodes in a consensus network. Our findings provide an approach to infer the performance of a consensus network from its temporal data.

3.
Chaos ; 26(9): 094816, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27781453

RESUMO

Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cycles at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.

5.
Proc Natl Acad Sci U S A ; 108(42): 17257-62, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21911407

RESUMO

A state-dependent dynamic network is a collection of elements that interact through a network, whose geometry evolves as the state of the elements changes over time. The genome is an intriguing example of a state-dependent network, where chromosomal geometry directly relates to genomic activity, which in turn strongly correlates with geometry. Here we examine various aspects of a genomic state-dependent dynamic network. In particular, we elaborate on one of the important ramifications of viewing genomic networks as being state-dependent, namely, their controllability during processes of genomic reorganization such as in cell differentiation.


Assuntos
Diferenciação Celular/genética , Redes Reguladoras de Genes , Modelos Genéticos , Animais , Diferenciação Celular/fisiologia , Retroalimentação Fisiológica , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Hematopoese/genética , Hematopoese/fisiologia , Humanos , Modelos Biológicos , Proteína MyoD/genética , Proteína MyoD/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...