Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 246, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819479

RESUMO

The glycosylphosphatidylinositol (GPI) biosynthetic pathway in the endoplasmic reticulum (ER) is crucial for generating GPI-anchored proteins (GPI-APs), which are translocated to the cell surface and play a vital role in cell signaling and adhesion. This study focuses on two integral components of the GPI pathway, the PIGL and PIGF proteins, and their significance in trophoblast biology. We show that GPI pathway mutations impact on placental development impairing the differentiation of the syncytiotrophoblast (SynT), and especially the SynT-II layer, which is essential for the establishment of the definitive nutrient exchange area within the placental labyrinth. CRISPR/Cas9 knockout of Pigl and Pigf in mouse trophoblast stem cells (mTSCs) confirms the role of these GPI enzymes in syncytiotrophoblast differentiation. Mechanistically, impaired GPI-AP generation induces an excessive unfolded protein response (UPR) in the ER in mTSCs growing in stem cell conditions, akin to what is observed in human preeclampsia. Upon differentiation, the impairment of the GPI pathway hinders the induction of WNT signaling for early SynT-II development. Remarkably, the transcriptomic profile of Pigl- and Pigf-deficient cells separates human patient placental samples into preeclampsia and control groups, suggesting an involvement of Pigl and Pigf in establishing a preeclamptic gene signature. Our study unveils the pivotal role of GPI biosynthesis in early placentation and uncovers a new preeclampsia gene expression profile associated with mutations in the GPI biosynthesis pathway, providing novel molecular insights into placental development with implications for enhanced patient stratification and timely interventions.


Assuntos
Diferenciação Celular , Glicosilfosfatidilinositóis , Placentação , Trofoblastos , Trofoblastos/metabolismo , Trofoblastos/citologia , Feminino , Gravidez , Animais , Humanos , Camundongos , Placentação/genética , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/biossíntese , Placenta/metabolismo , Placenta/citologia , Via de Sinalização Wnt , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Retículo Endoplasmático/metabolismo , Vias Biossintéticas/genética , Resposta a Proteínas não Dobradas , Sistemas CRISPR-Cas
3.
Front Microbiol ; 14: 1066493, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36876111

RESUMO

Serine incorporator protein 5 (SERINC5) is a key innate immunity factor that operates in the cell to restrict the infectivity of certain viruses. Different viruses have developed strategies to antagonize SERINC5 function but, how SERINC5 is controlled during viral infection is poorly understood. Here, we report that SERINC5 levels are reduced in COVID-19 patients during the infection by SARS-CoV-2 and, since no viral protein capable of repressing the expression of SERINC5 has been identified, we hypothesized that SARS-CoV-2 non-coding small viral RNAs (svRNAs) could be responsible for this repression. Two newly identified svRNAs with predicted binding sites in the 3'-untranslated region (3'-UTR) of the SERINC5 gene were characterized and we found that the expression of both svRNAs during the infection was not dependent on the miRNA pathway proteins Dicer and Argonaute-2. By using svRNAs mimic oligonucleotides, we demonstrated that both viral svRNAs can bind the 3'UTR of SERINC5 mRNA, reducing SERINC5 expression in vitro. Moreover, we found that an anti-svRNA treatment to Vero E6 cells before SARS-CoV-2 infection recovered the levels of SERINC5 and reduced the levels of N and S viral proteins. Finally, we showed that SERINC5 positively controls the levels of Mitochondrial Antiviral Signalling (MAVS) protein in Vero E6. These results highlight the therapeutic potential of targeting svRNAs based on their action on key proteins of the innate immune response during SARS-CoV-2 viral infection.

4.
Front Physiol ; 13: 800171, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35273517

RESUMO

MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is an OXPHOS disease mostly caused by the m.3243A>G mutation in the mitochondrial tRNALeu(UUR) gene. Recently, we have shown that the mutation significantly changes the expression pattern of several mitochondrial tRNA-derived small RNAs (mt tsRNAs or mt tRFs) in a cybrid model of MELAS and in fibroblasts from MELAS patients versus control cells. Among them are those derived from mt tRNA LeuUUR containing or not the m.3243A>G mutation (mt 5'-tRF LeuUUR-m.3243A>G and mt 5'-tRF LeuUUR), whose expression levels are, respectively, increased and decreased in both MELAS cybrids and fibroblasts. Here, we asked whether mt 5'-tRF LeuUUR and mt 5'-tRF LeuUUR-m.3243A>G are biologically relevant and whether these mt tRFs are detected in diverse patient samples. Treatment with a mimic oligonucleotide of mt tRNA LeuUUR fragment (mt 5'-tRF LeuUUR) showed a therapeutic potential since it partially restored mitochondrial respiration in MELAS cybrids. Moreover, these mt tRFs could be detected in biofluids like urine and blood. We also investigated the participation of miRNA pathway components Dicer and Ago2 in the mt tRFs biogenesis process. We found that Dicer and Ago2 localize in the mitochondria of MELAS cybrids and that immunoprecipitation of these proteins in cytoplasm and mitochondria fractions revealed an increased mt tRF/mt tRNA ratio in MELAS condition compared to WT. These preliminary results suggest an involvement of Dicer and Ago2 in the mechanism of mt tRF biogenesis and action.

5.
Front Mol Biosci ; 8: 643575, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026824

RESUMO

Mitochondria are not only important as energy suppliers in cells but also participate in other biological processes essential for cell growth and survival. They arose from α-proteobacterial predecessors through endosymbiosis and evolved transferring a large part of their genome to the host cell nucleus. Such a symbiotic relationship has been reinforced over time through increasingly complex signaling mechanisms between the host cell and mitochondria. So far, we do not have a complete view of the mechanisms that allow the mitochondria to communicate their functional status to the nucleus and trigger adaptive and compensatory responses. Recent findings place two classes of small non-coding RNAs (sncRNAs), microRNAs (miRNAs), and tRNA-derived small fragments, in such a scenario, acting as key pieces in the mitochondria-nucleus cross-talk. This review highlights the emerging roles and the interrelation of these sncRNAs in different signaling pathways between mitochondria and the host cell. Moreover, we describe in what way alterations of these complex regulatory mechanisms involving sncRNAs lead to diseases associated with mitochondrial dysfunction. In turn, these discoveries provide novel prognostic biomarker candidates and/or potential therapeutic targets.

6.
Bioelectrochemistry ; 132: 107410, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31821903

RESUMO

Robust control of anterior-posterior axial patterning during regeneration is mediated by bioelectric signaling. However, a number of systems-level properties of bioelectrochemical circuits, including stochastic outcomes such as seen in permanently de-stabilized "cryptic" flatworms, are not completely understood. We present a bioelectrical model for head-tail patterning that combines single-cell characteristics such as membrane ion channels with multicellular community effects via voltage-gated gap junctions. It complements the biochemically-focused models by describing the effects of intercellular electrochemical coupling, cutting plane, and gap junction blocking of the multicellular ensemble. We provide qualitative insights into recent experiments concerning planarian anterior/posterior polarity by showing that: (i) bioelectrical signals can help separated cell domains to know their relative position after injury and contribute to the transitions between the abnormal double-head state and the normal head-tail state; (ii) the bioelectrical phase-space of the system shows a bi-stability region that can be interpreted as the cryptic system state; and (iii) context-dependent responses are obtained depending on the cutting plane position, the initial bioelectrical state of the multicellular system, and the intercellular connectivity. The model reveals how simple bioelectric circuits can exhibit complex tissue-level patterning and suggests strategies for regenerative control in vivo and in synthetic biology contexts.


Assuntos
Padronização Corporal , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Animais , Fenômenos Eletrofisiológicos , Cabeça/fisiologia , Planárias/metabolismo , Planárias/fisiologia , Cauda/fisiologia
7.
Biochim Biophys Acta Mol Cell Res ; 1866(9): 1433-1449, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31195049

RESUMO

Recent evidences highlight the importance of mitochondria-nucleus communication for the clinical phenotype of oxidative phosphorylation (OXPHOS) diseases. However, the participation of small non-coding RNAs (sncRNAs) in this communication has been poorly explored. We asked whether OXPHOS dysfunction alters the production of a new class of sncRNAs, mitochondrial tRNA fragments (mt tRFs), and, if so, whether mt tRFs play a physiological role and their accumulation is controlled by the action of mt tRNA modification enzymes. To address these questions, we used a cybrid model of MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), an OXPHOS disease mostly caused by mutation m.3243A>G in the mitochondrial tRNALeu(UUR) gene. High-throughput analysis of small-RNA-Seq data indicated that m.3243A>G significantly changed the expression pattern of mt tRFs. A functional analysis of potential mt tRFs targets (performed under the assumption that these tRFs act as miRNAs) indicated an association with processes that involve the most common affected tissues in MELAS. We present evidences that mt tRFs may be biologically relevant, as one of them (mt i-tRF GluUUC), likely produced by the action of the nuclease Dicer and whose levels are Ago2 dependent, down-regulates the expression of mitochondrial pyruvate carrier 1 (MPC1), promoting the build-up of extracellular lactate. Therefore, our study underpins the idea that retrograde signaling from mitochondria is also mediated by mt tRFs. Finally, we show that accumulation of mt i-tRF GluUUC depends on the modification status of mt tRNAs, which is regulated by the action of stress-responsive miRNAs on mt tRNA modification enzymes.


Assuntos
Síndrome MELAS/genética , Síndrome MELAS/metabolismo , Mitocôndrias/metabolismo , Mutação , RNA de Transferência de Leucina/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulação para Baixo , Proteínas de Ligação ao GTP , Regulação da Expressão Gênica , Células HeLa , Humanos , MicroRNAs/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais , Transportadores de Ácidos Monocarboxílicos/genética , Fosforilação Oxidativa , Pequeno RNA não Traduzido , Proteínas de Ligação a RNA , Transdução de Sinais , Transcriptoma , tRNA Metiltransferases
8.
ACS Omega ; 3(10): 13567-13575, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411043

RESUMO

Bioelectricity is emerging as a crucial mechanism for signal transmission and processing from the single-cell level to multicellular domains. We explore theoretically the oscillatory dynamics that result from the coupling between the genetic and bioelectric descriptions of nonexcitable cells in multicellular ensembles, connecting the genetic prepatterns defined over the ensemble with the resulting spatio-temporal map of cell potentials. These prepatterns assume the existence of a small patch in the ensemble with locally low values of the genetic rate constants that produce a specific ion channel protein whose conductance promotes the cell-polarized state (inward-rectifying channel). In this way, the short-range interactions of the cells within the patch favor the depolarized membrane potential state, whereas the long-range interaction of the patch with the rest of the ensemble promotes the polarized state. The coupling between the local and long-range bioelectric signals allows a binary control of the patch membrane potentials, and alternating cell polarization and depolarization states can be maintained for optimal windows of the number of cells and the intercellular connectivity in the patch. The oscillatory phenomena emerge when the feedback between the single-cell bioelectric and genetic dynamics is coupled at the multicellular level. In this way, the intercellular connectivity acts as a regulatory mechanism for the bioelectrical oscillations. The simulation results are qualitatively discussed in the context of recent experimental studies.

9.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 3022-3037, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29928977

RESUMO

The pathomechanisms underlying oxidative phosphorylation (OXPHOS) diseases are not well-understood, but they involve maladaptive changes in mitochondria-nucleus communication. Many studies on the mitochondria-nucleus cross-talk triggered by mitochondrial dysfunction have focused on the role played by regulatory proteins, while the participation of miRNAs remains poorly explored. MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is mostly caused by mutation m.3243A>G in mitochondrial tRNALeu(UUR) gene. Adverse cardiac and neurological events are the commonest causes of early death in m.3243A>G patients. Notably, the incidence of major clinical features associated with this mutation has been correlated to the level of m.3243A>G mutant mitochondrial DNA (heteroplasmy) in skeletal muscle. In this work, we used a transmitochondrial cybrid model of MELAS (100% m.3243A>G mutant mitochondrial DNA) to investigate the participation of miRNAs in the mitochondria-nucleus cross-talk associated with OXPHOS dysfunction. High-throughput analysis of small-RNA-Seq data indicated that expression of 246 miRNAs was significantly altered in MELAS cybrids. Validation of selected miRNAs, including miR-4775 and miR-218-5p, in patient muscle samples revealed miRNAs whose expression declined with high levels of mutant heteroplasmy. We show that miR-218-5p and miR-4775 are direct regulators of fetal cardiac genes such as NODAL, RHOA, ISL1 and RXRB, which are up-regulated in MELAS cybrids and in patient muscle samples with heteroplasmy above 60%. Our data clearly indicate that TGF-ß superfamily signaling and an epithelial-mesenchymal transition-like program are activated in MELAS cybrids, and suggest that down-regulation of miRNAs regulating fetal cardiac genes is a risk marker of heart failure in patients with OXPHOS diseases.


Assuntos
Transição Epitelial-Mesenquimal/genética , Insuficiência Cardíaca/genética , Síndrome MELAS/genética , MicroRNAs/genética , Miocárdio/patologia , RNA de Transferência de Leucina/genética , Linhagem Celular Tumoral , DNA Mitocondrial/genética , Conjuntos de Dados como Assunto , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Insuficiência Cardíaca/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome MELAS/complicações , Síndrome MELAS/patologia , MicroRNAs/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Miocárdio/citologia , Miocárdio/metabolismo , Fosforilação Oxidativa , Análise de Sequência de RNA , Transdução de Sinais/genética , Proteínas da Superfamília de TGF-beta/genética , Proteínas da Superfamília de TGF-beta/metabolismo , Regulação para Cima
10.
Sci Rep ; 8(1): 1163, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348686

RESUMO

Human proteins MTO1 and GTPBP3 are thought to jointly catalyze the modification of the wobble uridine in mitochondrial tRNAs. Defects in each protein cause infantile hypertrophic cardiomyopathy with lactic acidosis. However, the underlying mechanisms are mostly unknown. Using fibroblasts from an MTO1 patient and MTO1 silenced cells, we found that the MTO1 deficiency is associated with a metabolic reprogramming mediated by inactivation of AMPK, down regulation of the uncoupling protein 2 (UCP2) and transcription factor PPARγ, and activation of the hypoxia inducible factor 1 (HIF-1). As a result, glycolysis and oxidative phosphorylation are uncoupled, while fatty acid metabolism is altered, leading to accumulation of lipid droplets in MTO1 fibroblasts. Unexpectedly, this response is different from that triggered by the GTPBP3 defect, as GTPBP3-depleted cells exhibit AMPK activation, increased levels of UCP2 and PPARγ, and inactivation of HIF-1. In addition, fatty acid oxidation and respiration are stimulated in these cells. Therefore, the HIF-PPARγ-UCP2-AMPK axis is operating differently in MTO1- and GTPBP3-defective cells, which strongly suggests that one of these proteins has an additional role, besides mitochondrial-tRNA modification. This work provides new and useful information on the molecular basis of the MTO1 and GTPBP3 defects and on putative targets for therapeutic intervention.


Assuntos
Acidose Láctica/metabolismo , Cardiomiopatia Hipertrófica/metabolismo , Proteínas de Transporte/genética , Proteínas de Ligação ao GTP/genética , Mitocôndrias/metabolismo , RNA de Transferência/genética , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Acidose Láctica/genética , Acidose Láctica/patologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte/metabolismo , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteínas de Ligação ao GTP/deficiência , Regulação da Expressão Gênica , Glicólise/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Fosforilação Oxidativa , PPAR gama/genética , PPAR gama/metabolismo , Cultura Primária de Células , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA , Transdução de Sinais , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
11.
Sci Rep ; 7(1): 6209, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740091

RESUMO

Mitochondrial diseases due to mutations in the mitochondrial (mt) DNA are heterogeneous in clinical manifestations but usually include OXPHOS dysfunction. Mechanisms by which OXPHOS dysfunction contributes to the disease phenotype invoke, apart from cell energy deficit, maladaptive responses to mitochondria-to-nucleus retrograde signaling. Here we used five different cybrid models of mtDNA diseases to demonstrate that the expression of the nuclear-encoded mt-tRNA modification enzymes TRMU, GTPBP3 and MTO1 varies in response to specific pathological mtDNA mutations, thus altering the modification status of mt-tRNAs. Importantly, we demonstrated that the expression of TRMU, GTPBP3 and MTO1 is regulated by different miRNAs, which are induced by retrograde signals like ROS and Ca2+ via different pathways. Our data suggest that the up- or down-regulation of the mt-tRNA modification enzymes is part of a cellular response to cope with a stoichiometric imbalance between mtDNA- and nuclear-encoded OXPHOS subunits. However, this miRNA-mediated response fails to provide full protection from the OXPHOS dysfunction; rather, it appears to aggravate the phenotype since transfection of the mutant cybrids with miRNA antagonists improves the energetic state of the cells, which opens up options for new therapeutic approaches.


Assuntos
Proteínas de Transporte/metabolismo , DNA Mitocondrial/genética , Proteínas de Ligação ao GTP/metabolismo , MicroRNAs/genética , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/metabolismo , Osteossarcoma/patologia , tRNA Metiltransferases/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proteínas de Transporte/genética , Proliferação de Células , Proteínas de Ligação ao GTP/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mutação , Osteossarcoma/genética , Osteossarcoma/metabolismo , Fosforilação Oxidativa , Proteínas de Ligação a RNA , Transdução de Sinais , Células Tumorais Cultivadas , tRNA Metiltransferases/genética
12.
J Phys Chem B ; 121(32): 7602-7613, 2017 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-28714698

RESUMO

We have studied theoretically the microRNA (miRNA) intercellular transfer through voltage-gated gap junctions in terms of a biophysically grounded system of coupled differential equations. Instead of modeling a specific system, we use a general approach describing the interplay between the genetic mechanisms and the single-cell electric potentials. The dynamics of the multicellular ensemble are simulated under different conditions including spatially inhomogeneous transcription rates and local intercellular transfer of miRNAs. These processes result in spatiotemporal changes of miRNA, mRNA, and ion channel protein concentrations that eventually modify the bioelectrical states of small multicellular domains because of the ensemble average nature of the electrical potential. The simulations allow a qualitative understanding of the context-dependent nature of the effects observed when specific signaling molecules are transferred through gap junctions. The results suggest that an efficient miRNA intercellular transfer could permit the spatiotemporal control of small cellular domains by the conversion of single-cell genetic and bioelectric states into multicellular states regulated by the gap junction interconnectivity.


Assuntos
Junções Comunicantes/metabolismo , MicroRNAs/metabolismo , Modelos Moleculares , Transfecção
13.
Sci Rep ; 6: 35201, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27731412

RESUMO

The single cell-centred approach emphasises ion channels as specific proteins that determine individual properties, disregarding their contribution to multicellular outcomes. We simulate the interplay between genetic and bioelectrical signals in non-excitable cells from the local single-cell level to the long range multicellular ensemble. The single-cell genetic regulation is based on mean-field kinetic equations involving the mRNA and protein concentrations. The transcription rate factor is assumed to depend on the absolute value of the cell potential, which is dictated by the voltage-gated cell ion channels and the intercellular gap junctions. The interplay between genetic and electrical signals may allow translating single-cell states into multicellular states which provide spatio-temporal information. The model results have clear implications for biological processes: (i) bioelectric signals can override slightly different genetic pre-patterns; (ii) ensembles of cells initially at the same potential can undergo an electrical regionalisation because of persistent genetic differences between adjacent spatial regions; and (iii) shifts in the normal cell electrical balance could trigger significant changes in the genetic regulation.


Assuntos
Potenciais da Membrana , Modelos Biológicos , Transdução de Sinais , Animais , Drosophila , Canais Iônicos/genética , Canais Iônicos/fisiologia
14.
PLoS One ; 10(12): e0144273, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26642043

RESUMO

GTPBP3 is an evolutionary conserved protein presumably involved in mitochondrial tRNA (mt-tRNA) modification. In humans, GTPBP3 mutations cause hypertrophic cardiomyopathy with lactic acidosis, and have been associated with a defect in mitochondrial translation, yet the pathomechanism remains unclear. Here we use a GTPBP3 stable-silencing model (shGTPBP3 cells) for a further characterization of the phenotype conferred by the GTPBP3 defect. We experimentally show for the first time that GTPBP3 depletion is associated with an mt-tRNA hypomodification status, as mt-tRNAs from shGTPBP3 cells were more sensitive to digestion by angiogenin than tRNAs from control cells. Despite the effect of stable silencing of GTPBP3 on global mitochondrial translation being rather mild, the steady-state levels and activity of Complex I, and cellular ATP levels were 50% of those found in the controls. Notably, the ATPase activity of Complex V increased by about 40% in GTPBP3 depleted cells suggesting that mitochondria consume ATP to maintain the membrane potential. Moreover, shGTPBP3 cells exhibited enhanced antioxidant capacity and a nearly 2-fold increase in the uncoupling protein UCP2 levels. Our data indicate that stable silencing of GTPBP3 triggers an AMPK-dependent retrograde signaling pathway that down-regulates the expression of the NDUFAF3 and NDUFAF4 Complex I assembly factors and the mitochondrial pyruvate carrier (MPC), while up-regulating the expression of UCP2. We also found that genes involved in glycolysis and oxidation of fatty acids are up-regulated. These data are compatible with a model in which high UCP2 levels, together with a reduction in pyruvate transport due to the down-regulation of MPC, promote a shift from pyruvate to fatty acid oxidation, and to an uncoupling of glycolysis and oxidative phosphorylation. These metabolic alterations, and the low ATP levels, may negatively affect heart function.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Proteínas de Ligação ao GTP/genética , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Ligação a Calmodulina/genética , Proteínas de Ligação a Calmodulina/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Escherichia coli/genética , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Glicólise/genética , Células HEK293 , Humanos , Canais Iônicos/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/genética , Transportadores de Ácidos Monocarboxílicos , Fosforilação Oxidativa , RNA de Transferência de Lisina/metabolismo , Ribonuclease Pancreático/química , Ribonuclease Pancreático/metabolismo , Proteína Desacopladora 2
15.
Hum Mol Genet ; 24(1): 167-84, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25149473

RESUMO

Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria.


Assuntos
Proteínas de Transporte/genética , Proteínas de Ligação ao GTP/genética , Síndrome MELAS/genética , MicroRNAs/metabolismo , Proteínas Mitocondriais/genética , tRNA Metiltransferases/genética , Núcleo Celular/genética , Células Cultivadas , Regulação para Baixo , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , RNA/metabolismo , RNA Mitocondrial , RNA de Transferência de Leucina/metabolismo , Proteínas de Ligação a RNA , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
16.
RNA Biol ; 11(12): 1495-507, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25607529

RESUMO

Posttranscriptional modification of the uridine located at the wobble position (U34) of tRNAs is crucial for optimization of translation. Defects in the U34 modification of mitochondrial-tRNAs are associated with a group of rare diseases collectively characterized by the impairment of the oxidative phosphorylation system. Retrograde signaling pathways from mitochondria to nucleus are involved in the pathophysiology of these diseases. These pathways may be triggered by not only the disturbance of the mitochondrial (mt) translation caused by hypomodification of tRNAs, but also as a result of nonconventional roles of mt-tRNAs and mt-tRNA-modifying enzymes. The evolutionary conservation of these enzymes supports their importance for cell and organismal functions. Interestingly, bacterial and eukaryotic cells respond to stress by altering the expression or activity of these tRNA-modifying enzymes, which leads to changes in the modification status of tRNAs. This review summarizes recent findings about these enzymes and sets them within the previous data context.


Assuntos
Escherichia coli/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Uridina/análogos & derivados , Uridina/metabolismo , Anticódon/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Códon/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Transferases de Grupo de Um Carbono/genética , Transferases de Grupo de Um Carbono/metabolismo , Fosforilação Oxidativa , RNA/genética , RNA Mitocondrial , RNA de Transferência Aminoácido-Específico/genética , RNA de Transferência Aminoácido-Específico/metabolismo , Transdução de Sinais
17.
Biochimie ; 94(7): 1510-20, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22386868

RESUMO

Among all RNAs, tRNA exhibits the largest number and the widest variety of post-transcriptional modifications. Modifications within the anticodon stem loop, mainly at the wobble position and purine-37, collectively contribute to stabilize the codon-anticodon pairing, maintain the translational reading frame, facilitate the engagement of the ribosomal decoding site and enable translocation of tRNA from the A-site to the P-site of the ribosome. Modifications at the wobble uridine (U34) of tRNAs reading two degenerate codons ending in purine are complex and result from the activity of two multi-enzyme pathways, the IscS-MnmA and MnmEG pathways, which independently work on positions 2 and 5 of the U34 pyrimidine ring, respectively, and from a third pathway, controlled by TrmL (YibK), that modifies the 2'-hydroxyl group of the ribose. MnmEG is the only common pathway to all the mentioned tRNAs, and involves the GTP- and FAD-dependent activity of the MnmEG complex and, in some cases, the activity of the bifunctional enzyme MnmC. The Escherichia coli MnmEG complex catalyzes the incorporation of an aminomethyl group into the C5 atom of U34 using methylene-tetrahydrofolate and glycine or ammonium as donors. The reaction requires GTP hydrolysis, probably to assemble the active site of the enzyme or to carry out substrate recognition. Inactivation of the evolutionarily conserved MnmEG pathway produces a pleiotropic phenotype in bacteria and mitochondrial dysfunction in human cell lines. While the IscS-MnmA pathway and the MnmA-mediated thiouridylation reaction are relatively well understood, we have limited information on the reactions mediated by the MnmEG, MnmC and TrmL enzymes and on the precise role of proteins MnmE and MnmG in the MnmEG complex activity. This review summarizes the present state of knowledge on these pathways and what we still need to know, with special emphasis on the MnmEG pathway.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , GTP Fosfo-Hidrolases/metabolismo , Transferases de Grupo de Um Carbono/metabolismo , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , RNA de Transferência/metabolismo , Animais , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , GTP Fosfo-Hidrolases/química , Humanos , Transferases de Grupo de Um Carbono/química
18.
J Biol Chem ; 286(6): 4150-64, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21118818

RESUMO

MicroRNAs (miRNAs) are an emerging class of non-coding endogenous RNAs involved in multiple cellular processes, including cell differentiation. Treatment with retinoic acid (RA) results in neural differentiation of neuroblastoma cells. We wanted to elucidate whether miRNAs contribute to the gene expression changes induced by RA in neuroblastoma cells and whether miRNA regulation is involved in the transduction of the RA signal. We show here that RA treatment of SH-SY5Y neuroblastoma cells results in profound changes in the expression pattern of miRNAs. Up to 42 different miRNA species significantly changed their expression (26 up-regulated and 16 down-regulated). Among them, the closely related miR-10a and -10b showed the most prominent expression changes. Induction of miR-10a and -10b by RA also could be detected in LA-N-1 neuroblastoma cells. Loss of function experiments demonstrated that miR-10a and -10b are essential mediators of RA-induced neuroblastoma differentiation and of the associated changes in migration, invasion, and in vivo metastasis. In addition, we found that the SR-family splicing factor SFRS1 (SF2/ASF) is a target for miR-10a -and -10b in HeLa and SH-SY5Y neuroblastoma cells. We show here that changes in miR-10a and -10b expression levels may regulate SFRS1-dependent alternative splicing and translational functions. Taken together, our results give support to the idea that miRNA regulation plays a key role in RA-induced neuroblastoma cell differentiation. The discovery of SFRS1 as direct target of miR-10a and -10b supports the emerging functional interaction between two post-transcriptional mechanisms, microRNAs and splicing, in the neuronal differentiation context.


Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Receptores Imunológicos/metabolismo , Tretinoína/farmacologia , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Embrião de Galinha , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , Humanos , Glicoproteínas de Membrana/genética , Invasividade Neoplásica , Metástase Neoplásica , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares/genética , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteínas de Ligação a RNA , Receptores Imunológicos/genética , Fatores de Processamento de Serina-Arginina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...