Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; 17(2): e20437, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38379199

RESUMO

Drought represents a significant production challenge to maize farmers in West and Central Africa, causing substantial economic losses. Breeders at the International Institute of Tropical Agriculture have therefore been developing drought-tolerant maize varieties to attain high grain yields in rainfed maize production zones. The present review provides a historical overview of the approaches used and progress made in developing drought-tolerant hybrids over the years. Breeders made a shift from a wide area testing approach, to the use of managed screening sites, to precisely control the intensity, and timing of drought stress for developing drought-tolerant maize varieties. These sites coupled with the use of molecular markers allowed choosing suitable donors with drought-adaptive alleles for integration into existing elite maize lines to generate new drought-tolerant inbred lines. These elite maize inbred lines have then been used to develop hybrids with enhanced tolerance to drought. Genetic gains estimates were made using performance data of drought-tolerant maize hybrids evaluated in regional trials for 11 years under managed drought stress, well-watered conditions, and across diverse rainfed environments. The results found significant linear annual yield gains of 32.72 kg ha-1 under managed drought stress, 38.29 kg ha-1 under well-watered conditions, and 66.57 kg ha-1 across multiple rainfed field environments. Promising hybrids that deliver high grain yields were also identified for areas affected by drought and variable rainfed growing conditions. The significant genetic correlations found among the three growing conditions highlight the potential to exploit the available genetic resources and modern tools to further enhance tolerance to drought in hybrids.


Assuntos
Secas , Melhoramento Vegetal , Zea mays , Zea mays/genética , Zea mays/fisiologia , África Central , África Ocidental , Clima Tropical , Adaptação Fisiológica/genética , Hibridização Genética
2.
Heliyon ; 9(11): e21659, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027824

RESUMO

Frequent occurrence of drought, heat, low soil fertility and Striga infestation are the main stress factors reducing maize yield in the Sahel. Adoption of stable multiple stress tolerant maize cultivars in the region is crucial for achieving food security. However, selection of a stable high yielding cultivar is complicated by genotype × environment interaction (GEI) due to differential responses to growing conditions. Eleven extra-early maturing multiple-stress tolerant maize hybrids and two checks arranged in a randomized complete block design was evaluated across nine locations for two years in Mali and Niger. The objectives of this study were to identify (i) stable and high-yielding maize hybrids, and (ii) suitable test locations for selecting promising extra-early maize hybrids. GGE biplot was used for graphical analysis. Significant genotype, location and GEI effects were detected for grain yield and number of ears per plant. EEWQH-13 produced the highest grain yield (3860 kg ha-1) while EEYQH-1 had the poorest yield (2663 kg ha-1) with trial mean of 3395 kg ha-1 for all hybrids. GGE biplot explained 69.6 % of the total variation in grain yield among the hybrids. The polygon view identified EEWQH-13 as the best hybrid across six of the nine test locations. EEPVAH-58 was identified as the most stable high yielding hybrid across the nine test locations followed by EEWQH-16 and EEWQH-13. The nine locations were clustered under two mega-environments (ME1, ME2). Among the nine test locations, Tara and Aderaoua clustered in ME1 were the most suitable ones for selecting promising extra-early maize hybrids for wider adaptation. The three hybrids, EEPVAH-58, EEWQH-16, and EEWQH-13, identified in this study could be recommended for on-farm evaluation to confirm the consistency of their yield performance for possible release and commercialization in Mali and Niger.

3.
BMC Genom Data ; 24(1): 57, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759333

RESUMO

BACKGROUND: The establishment of heterotic groups of inbred lines is crucial for hybrid maize breeding programs. Currently, there is no information on the heterotic patterns of the Provitamin A (PVA) inbred lines developed in the maize improvement program of the International Institute of Tropical Agriculture (IITA) to form productive PVA enriched hybrids for areas affected by vitamin A deficiency. This study assessed the feasibility of classifying PVA-enriched inbred lines into heterotic groups based on PVA content without compromising grain yield in hybrids. Sixty PVA inbred lines were crossed to two testers representing two existing heterotic groups. The resulting 120 testcrosses hybrids were evaluated for two years at four locations in Nigeria. RESULTS: The two testers effectively classified the inbred lines into two heterotic groups. The PVA-based general combining ability and specific combining ability (HSGCA) method assigned 31 and 27 PVA enriched maize inbred lines into HGB and HGA, respectively, leaving two inbred lines not assigned to any group. The yield-based HSGCA method classified 32 inbred lines into HGB and 28 inbred lines into HGA. Both PVA and yield-based heterotic grouping methods assigned more than 40% of the inbred lines into the same heterotic groups. Even though both PVA and yield-based heterotic grouping of the inbred lines differed from the clusters defined by the DArTag SNP markers, more than 40% of the inbred lines assigned to HGA were present in Cluster-1 and 60% of the inbred lines assigned to HGB were present in Cluster-3. Interestingly, the inbred lines assigned to the same heterotic groups based on PVA content and grain yield were distributed across the three Ward's clusters. The PVA-based HSGCA was identified as the most effective heterotic grouping method for breeding programs working on PVA biofortification. CONCLUSIONS: Selecting PVA enriched maize inbred lines with diverse genetic backgrounds from the three marker-based clusters may facilitate the development of productive hybrids with high PVA content and for generating source populations to develop more vigorous maize inbred lines with much higher concentrations of PVA.


Assuntos
Provitaminas , Zea mays , Zea mays/genética , Melhoramento Vegetal , Academias e Institutos , Agricultura , Grão Comestível
4.
Glob Food Sec ; 38: 100713, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37752896

RESUMO

Maize is widely used for food, animal feed, and industrial raw material in Nigeria. This paper documents the important changes that characterize Nigeria's maize production and area expansion along with contributing factors that have transformed maize from a backyard food crop to a dominant food security and commercial crop. Using both secondary and primary data on maize production and varietal adoption over the last six decades, we found that Nigeria now produces ten times more maize than it did in 1960 and four times more maize than it did in 2005. Our findings further suggested that government policies and institutional arrangements that promoted access to and use of modern inputs and increased demand of maize grain for food, feed, and other industrial uses have played major roles in transforming maize from a backyard crop to a dominant staple and commercial crop in Nigeria. Considering the impeding climate change threats to food security in Nigeria, policy interventions should be tailored towards further scaling-up of stress resilient and climate-smart maize varieties to improve the productivity, income, and resilience of smallholder farmers. This requires strong support not only to get recently released superior improved varieties into the hands of smallholder farmers but also to accelerate varietal turnover.

5.
Front Genet ; 13: 1023318, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36568398

RESUMO

Maize is a strategic food crop in sub-Saharan Africa. However, most maize growing tropical savannas particularly in West and Central African experience the occurrence of frequent droughts and Striga infestation, resulting in 30-100% yield losses. This production zones need maize cultivars that combine tolerance to the two stresses. IITA in collaboration with national partners has thus employed a sequential selection scheme to incorporate both drought tolerance and Striga resistance in topical maize hybrids using reliable screening protocols. The main objective of the present study was therefore to use grain yield and other agronomic traits recorded in regional collaborative hybrid trials conducted for 8 years under manged stressful and non-stressful conditions and across rainfed field environments to estimate genetic gains in grain yields using mixed model analyses. The results showed significant (p < 0.05) annual yield gains of 11.89 kg ha-1 under manged drought stress (MDS) and 86.60 kg ha-1 under Striga infestation (STRIN) with concomitant yield increases of 62.65 kg ha-1 under full irrigation (WW), 102.44 kg ha-1 under Striga non-infested (STRNO) conditions and 53.11 kg ha-1 across rainfed field environments. Grain yield displayed significant but not strong genetic correlation of 0.41 ± 0.07 between MDS and STRIN, indicating that gene expression was not consistent across the two stress conditions. Furthermore, grain yield recorded in MET had significant moderate genetic correlations of 0.58 ± 0.06 and 0.44 ± 0.07It with MDS and STRIN, respectively. These results emphasize the need to screen inbred linens under both stress conditions to further enhance the rate of genetic gain in grain yield in hybrids for areas where the two stresses co-occur. Nonetheless, this study demonstrated that the sequential selection scheme has been successful in generating hybrids with dependable yields that can reduce chronic food deficits in rural communities experiencing simultaneous presence of drought and S. hermonthica infestation in their production fields.

6.
Front Genet ; 13: 955420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003335

RESUMO

Vitamin A deficiency poses health risks for children, pregnant women, and nursing mothers in sub-Saharan Africa (SSA) and Southeast Asia. Provitamin A-biofortified maize varieties can contribute to minimizing the adverse effects of vitamin A deficiency in areas where maize is a staple food crop. Identifying suitable testers is important to breed provitamin A-biofortified hybrid maize. This study was therefore conducted to 1) assess the suitability of maize inbred lines with contrasting levels of provitamin A (one with high and one with low provitamin A concentration) to assess the combining ability of maize inbred lines in accumulating provitamin A and other carotenoids, and grain yield, 2) confirm the mode of inheritance of provitamin A and grain yield, and 3) identify promising inbred lines with desirable combining ability effects for use to develop high-yielding provitamin A-biofortified hybrids. The inbreds crossed to the two inbred testers were evaluated in four environments for the carotenoid content and eight environments for the agronomic performance. The combined analysis of variance revealed a significant genetic variation among the testcrosses for all carotenoids, grain yield, and other agronomic traits. The mode of inheritance for grain yield, other agronomic traits, provitamin A, and other carotenoids was regulated by both additive and non-additive gene effects with a prominence of additive gene effects. The high provitamin A tester that displayed positive GCA effects for ß-carotene and provitamin A content, broader agronomic performance of testcrosses, and higher levels of provitamin A in testcrosses can be considered suitable for breeding programs developing provitamin A-biofortified hybrids. The inbred lines TZI2012, TZI2142, TZI2130, TZI2065-2, TZI2161, TZI2025, TZI1278, TZI1314, TZI1304, and TZI2032 with positive GCA effects for grain yield and provitamin A content could be used as parental lines to develop source population of new inbred lines and high-yielding hybrids with elevated levels of provitamin A. The best performing hybrids are promising for release as high-yielding provitamin A maize hybrids after further evaluations.

7.
BMC Plant Biol ; 22(1): 286, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35681124

RESUMO

BACKGROUND: Temperate maize inbred lines with expired Plant Variety Protection Act certificates (Ex-PVP) are potential sources of desirable alleles for tropical germplasm improvement. Up to now, the usefulness of the Ex-PVP inbred lines as a potential source of novel beneficial alleles for Striga hermonthica resistance breeding to enhance genetic gain in tropical maize has not been reported. RESULTS: This study was thus conducted to characterize the combining ability of 24 Ex-PVP inbred lines in crosses with two tropical Striga resistant inbred testers under Striga-infested and non-infested conditions and across three locations for 2 years. Many testcrosses between Ex-PVP inbred lines and the first tester (T1) produced competitive or significantly higher grain yields compared to the hybrid between the two resistant testers under Striga infested and non-infested conditions and across multiple test locations. Also, most of the testcrosses with positive heterosis for grain yield and negative heterosis for Striga damage and emerged Striga count involved T1 as a tester. Our study identified six Ex-PVP inbred lines with positive GCA effects for grain yield under Striga infested and non-infested conditions and across multiple test locations. Amongst these, inbred lines HB8229-1 and WIL900-1 also displayed negative GCA effects for emerged Striga count and Striga damage rating. The inbred line HB8229-1 showed positive SCA effects for grain yield with T2, whereas WIL900-1 had positive SCA effects for grain yield with T1. Over 70% of the Ex-PVP inbred lines were consistently assigned to specific heterotic groups using yield-based classifying methods (mean grain yield and SCA effects). CONCLUSIONS: These results could facilitate systematic introgression of the Ex-PVP inbred lines into the existing Striga resistant heterotic groups in IITA. The Ex-PVP inbred lines with positive GCA effects and producing high grain yields in hybrid combinations could be useful parents for enhancing Striga resistance and agronomic performance of tropical maize hybrids.


Assuntos
Striga , Cruzamentos Genéticos , Grão Comestível/genética , Vigor Híbrido/genética , Melhoramento Vegetal , Striga/genética , Zea mays/genética
8.
Plants (Basel) ; 10(8)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34451625

RESUMO

Maize is consumed in different traditional diets as a source of macro- and micro-nutrients across Africa. Significant investment has thus been made to develop maize with high provitamin A content to complement other interventions for alleviating vitamin A deficiencies. The current breeding focus on increasing ß-carotene levels to develop biofortified maize may affect the synthesis of other beneficial carotenoids. The changes in carotenoid profiles, which are commonly affected by environmental factors, may also lead to a trade-off with agronomic performance. The present study was therefore conducted to evaluate provitamin A biofortified maize hybrids across diverse field environments. The results showed that the difference in accumulating provitamin A and other beneficial carotenoids across variable growing environments was mainly regulated by the genetic backgrounds of the hybrids. Many hybrids, accumulating more than 10 µg/g of provitamin A, produced higher grain yields (>3600 kg/ha) than the orange commercial maize hybrid (3051 kg/ha). These hybrids were also competitive, compared to the orange commercial maize hybrid, in accumulating lutein and zeaxanthins. Our study showed that breeding for enhanced provitamin A content had no adverse effect on grain yield in the biofortified hybrids evaluated in the regional trials. Furthermore, the results highlighted the possibility of developing broadly adapted hybrids containing high levels of beneficial carotenoids for commercialization in areas with variable maize growing conditions in Africa.

9.
Plant Breed ; 140(2): 195-210, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34239217

RESUMO

Striga hermonthica, causes up to 100% yield loss in maize production in Sub-Saharan Africa. Developing Striga-resistant maize cultivars could be a major component of integrated Striga management strategies. This paper presents a comprehensive overview of maize breeding activities related to Striga resistance and its management. Scientific surveys have revealed that conventional breeding strategies have been used more than molecular breeding strategies in maize improvement for Striga resistance. Striga resistance genes are still under study in the International Institute for Tropical Agriculture (IITA) maize breeding programme. There is also a need to discover QTL and molecular markers associated with such genes to improve Striga resistance in maize. Marker Assistance Breeding is expected to increase maize breeding efficiency with complex traits such as resistance towards Striga because of the complex nature of the host-parasite relationship and its intersection with other environmental factors. Conventional alongside molecular tools and technical controls are promising methods to effectively assess Striga in Sub-Saharan Africa.

10.
PLoS One ; 16(6): e0253481, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34143833

RESUMO

A desirable tester that elicits greater genetic difference in Striga resistance among test crosses in a breeding program has not been reported. Therefore, this study was conducted to characterize 30 Striga resistant yellow endosperm maize inbred lines and three testers with varying resistance levels to Striga using DArTseq SNP markers and agronomic traits to identify a suitable tester for resistance hybrid breeding. Marker-based and agronomic trait-based genetic distances were estimated for yellow endosperm maize inbred lines and testers with varying resistance levels to Striga. The Marker-based cluster analysis separated the Striga resistant lines and testers into two distinct groups. Although the susceptible tester (T3) was the most distantly related to the 30 Striga resistant inbred lines, it exhibited a narrower range in genetic distance estimates and poor agronomic performance under Striga infestation in crosses with the resistant lines. In contrast, the resistant tester (T2) showed a broader range in genetic distance estimates in pairs with the 30 resistant lines. Also, it formed many high yielding hybrids with desirable traits under parasite pressure. Furthermore, the most significant positive association between agronomic trait-based and marker-based distance estimates (r = 0.389, P = 0.01) was observed when T2 has paired with the Striga resistant maize inbred lines. It thus appears that T2 may be used as a suitable tester to determine the breeding value of lines in hybrid maize resistance breeding programs. T2 was the most suitable tester, with a tolerant tester (T1) as an alternative tester to characterize the combining ability of Striga resistant maize inbred lines. This result can also encourage other breeders to investigate testers relative discriminating ability with varying levels of resistance in hybrid breeding for resistance to diseases, pests, and other parasitic plants.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Striga , Zea mays/genética , Variação Genética , Fenótipo
11.
Plants (Basel) ; 9(9)2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32957613

RESUMO

Striga hermonthica is a serious biotic stress limiting maize production in sub-Saharan Africa. The limited information on the patterns of genetic diversity among maize inbred lines derived from source germplasm with mixed genetic backgrounds limits the development of inbred lines, hybrids, and synthetics with durable resistance to S. hermonthica. This study was conducted to assess the level of genetic diversity in a panel of 150 diverse maize inbred lines using agronomic and molecular data and also to infer the population structure among the inbred lines. Ten Striga-resistance-related traits were used for the phenotypic characterization, and 16,735 high-quality single-nucleotide polymorphisms (SNPs), identified by genotyping-by-sequencing (GBS), were used for molecular diversity. The phenotypic and molecular hierarchical cluster analyses grouped the inbred lines into five clusters, respectively. However, the grouping patterns between the phenotypic and molecular hierarchical cluster analyses were inconsistent due to non-overlapping information between the phenotypic and molecular data. The correlation between the phenotypic and molecular diversity matrices was very low (0.001), which is in agreement with the inconsistencies observed between the clusters formed by the phenotypic and molecular diversity analyses. The joint phenotypic and genotypic diversity matrices grouped the inbred lines into three groups based on their reaction patterns to S. hermonthica, and this was able to exploit a broad estimate of the actual diversity among the inbred lines. The joint analysis shows an invaluable insight for measuring genetic diversity in the evaluated materials. The result indicates that wide genetic variability exists among the inbred lines and that the joint diversity analysis can be utilized to reliably assign the inbred lines into heterotic groups and also to enhance the level of resistance to Striga in new maize varieties.

12.
Front Plant Sci ; 11: 166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194590

RESUMO

Maize is a food security crop cultivated in the African savannas that are vulnerable to the occurrence of drought stress and Striga hermonthica infestation. The co-occurrence of these stresses can severely damage crop growth and productivity of maize. Until recently, maize breeding in International Institute of Tropical Agriculture (IITA) has focused on the development of either drought tolerant or S. hermonthica resistant germplasm using independent screening protocols. The present study was therefore conducted to examine the extent to which maize hybrids simultaneously expressing resistance to S. hermonthica and tolerance to drought (DTSTR) could be developed through sequential selection of parental lines using the two screening protocols. Regional trials involving 77 DTSTR and 22 commercial benchmark hybrids (STR and non-DTSTR) were then conducted under Striga-infested and non-infested conditions, managed drought stress and fully irrigated conditions as well as in multiple rainfed environments for 5 years. The observed yield reductions of 61% under managed drought stress and 23% under Striga-infestation created desirable stress levels leading to the detection of significant differences in grain yield among hybrids at individual stress and non-stress conditions. On average, the DTSTR hybrids out-yielded the STR and non-DTSTR commercial hybrids by 13-19% under managed drought stress and fully irrigated conditions and by -4 to 70% under Striga-infested and non-infested conditions. Among the DTSTR hybrids included in the regional trials, 33 were high yielders with better adaptability across environments under all stressful and non-stressful testing conditions. Twenty-four of the 33 DTSTR hybrids also yielded well across diverse rainfed environments. The genetic correlations of grain yield under managed drought stress with yield under Striga-infestation and multiple rainfed environments were 0.51 and 0.57, respectively. Also, a genetic correlation between yields under Striga-infestation with that recorded in multiple rainfed environments was 0.58. These results suggest that the sequential selection scheme offers an opportunity to accumulate desirable stress-related traits in parents contributing to superior agronomic performance in hybrids across stressful and diverse rainfed field environments that are commonly encountered in the tropical savannas of Africa.

13.
Artigo em Inglês | MEDLINE | ID: mdl-29693596

RESUMO

The management of the fall armyworm Spodoptera frugiperda in maize field necessitates the use a big quantities of insecticides and sometimes the use of multiple types and formulations of chemicals. The use of insecticides in crops is associated with environmental risks and health hazards to both producers and consumers. This study was designed to evaluate the residue of 11 insecticides that were used to control high population of the fall armyworm in maize field in Mokwa, Nigeria. Maize and soil samples were collected from an experimental field to investigate the residue level using high performance liquid chromatography (HPLC, Agilent Technologies, Santa Clara, CA, USA) analysis techniques. Results revealed the presence of five insecticide compounds (Cypermethrin, Deltamethrin, Lambda-Cyhalothrin, Permethrin, and Chorpyrifos) in soil samples with possible adverse effects on soil born organisms and other non-targeted species. In contrast, no residue was found in maize stems and seeds. From these results, we conclude that the treated maize remains safe for consumption and the producers may not get any serious risk of contamination from the chemical control of the fall armyworm.


Assuntos
Resíduos de Praguicidas/análise , Spodoptera/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Animais , Cromatografia Líquida de Alta Pressão , Larva/efeitos dos fármacos , Nigéria , Nitrilas/análise , Piretrinas/análise
14.
Agronomy (Basel) ; 8(12): 274, 2018 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33304638

RESUMO

Drought and high temperature are two major factors limiting maize productivity in sub-Saharan Africa. An increase in temperature above 30 °C reduces yield by 1% under optimal rain-fed condition and by 1.7% under drought stress (DS) and up to 40% under combined drought and heat stress (DSHTS). Approaches that improve performance under the two stresses are essential to sustain productivity. The objectives of this study were to (i) assess the extent of variation in tolerance to DSHTS from among the existing best drought tolerant (DT) hybrids; (ii) examine the response patterns of the hybrids to DSHTS; (iii) identify traits that contributed to better performance under DSHTS; and (iv) select the best hybrids with tolerance to DSHTS stress. We evaluated 40 DT hybrids under DSHTS, DS, and well-watered (WW) conditions for three years. Highly significant (p < 0.001) differences were found among hybrids for grain yield and other traits. Moderately to low repeatability values were detected for grain yield under DS (0.63) and under DSHTS (0.48). Grain yield under DS was not correlated with grain yield under DSHTS (r = 0.29; p = 0.06), but it was correlated with grain yield under WW (r = 0.74; p < 0.001). Grain yield was strongly correlated with ears per plant, ear and pant aspects, days to anthesis and silking under both DS and DSHTS. Tassel blast accounted for 28% of the yield reduction under DSHTS. The top five DT hybrids produced 9 to 26% more grain yields than the best commercial hybrid. Three hybrids produced high grain yields under DTHTS and DS as well as under WW. These hybrids will be tested further in collaboration with partners for possible release.

15.
Front Plant Sci ; 8: 841, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588598

RESUMO

Marker-assisted recurrent selection (MARS) is a breeding method used to accumulate favorable alleles that for example confer tolerance to drought in inbred lines from several genomic regions within a single population. A bi-parental cross formed from two parents that combine resistance to Striga hermonthica with drought tolerance, which was improved through MARS, was used to assess changes in the frequency of favorable alleles and its impact on inbred line improvement. A total of 200 testcrosses of randomly selected S1 lines derived from the original (C0) and advanced selection cycles of this bi-parental population, were evaluated under drought stress (DS) and well-watered (WW) conditions at Ikenne and under artificial Striga infestation at Abuja and Mokwa in Nigeria in 2014 and 2015. Also, 60 randomly selected S1 lines each derived from the four cycles (C0, C1, C2, C3) were genotyped with 233 SNP markers using KASP assay. The results showed that the frequency of favorable alleles increased with MARS in the bi-parental population with none of the markers showing fixation. The gain in grain yield was not significant under DS condition due to the combined effect of DS and armyworm infestation in 2015. Because the parents used for developing the bi-parental cross combined tolerance to drought with resistance to Striga, improvement in grain yield under DS did not result in undesirable changes in resistance to the parasite in the bi-parental maize population improved through MARS. MARS increased the mean number of combinations of favorable alleles in S1 lines from 114 in C0 to 124 in C3. The level of heterozygosity decreased by 15%, while homozygosity increased by 13% due to the loss of some genotypes in the population. This study demonstrated the effectiveness of MARS in increasing the frequency of favorable alleles for tolerance to drought without disrupting the level of resistance to Striga in a bi-parental population targeted as a source of improved maize inbred lines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...