Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0287349, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37363919

RESUMO

Biometric technology is becoming increasingly prevalent in several vital applications that substitute traditional password and token authentication mechanisms. Recognition accuracy and computational cost are two important aspects that are to be considered while designing biometric authentication systems. Thermal imaging is proven to capture a unique thermal signature for a person and thus has been used in thermal face recognition. However, the literature did not thoroughly analyse the impact of feature selection on the accuracy and computational cost of face recognition which is an important aspect for limited resources applications like IoT ones. Also, the literature did not thoroughly evaluate the performance metrics of the proposed methods/solutions which are needed for the optimal configuration of the biometric authentication systems. This paper proposes a thermal face-based biometric authentication system. The proposed system comprises five phases: a) capturing the user's face with a thermal camera, b) segmenting the face region and excluding the background by optimized superpixel-based segmentation technique to extract the region of interest (ROI) of the face, c) feature extraction using wavelet and curvelet transform, d) feature selection by employing bio-inspired optimization algorithms: grey wolf optimizer (GWO), particle swarm optimization (PSO) and genetic algorithm (GA), e) the classification (user identification) performed using classifiers: random forest (RF), k-nearest neighbour (KNN), and naive bayes (NB). Upon the public dataset, Terravic Facial IR, the proposed system was evaluated using the metrics: accuracy, precision, recall, F-measure, and receiver operating characteristic (ROC) area. The results showed that the curvelet features optimized using the GWO and classified with random forest could help in authenticating users through thermal images with performance up to 99.5% which is better than the results of wavelet features by 10% while the former used 5% fewer features. In addition, the statistical analysis showed the significance of our proposed model. Compared to the related works, our system showed to be a better thermal face authentication model with a minimum set of features, making it computational-friendly.


Assuntos
Identificação Biométrica , Reconhecimento Facial , Teorema de Bayes , Identificação Biométrica/métodos , Algoritmos , Biometria
2.
Comput Biol Med ; 42(1): 123-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22115076

RESUMO

This paper presents a method for breast cancer diagnosis in digital mammogram images. Multi-resolution representations, wavelet or curvelet, are used to transform the mammogram images into a long vector of coefficients. A matrix is constructed by putting wavelet or curvelet coefficients of each image in row vector, where the number of rows is the number of images, and the number of columns is the number of coefficients. A feature extraction method is developed based on the statistical t-test method. The method is ranking the features (columns) according to its capability to differentiate the classes. Then, a dynamic threshold is applied to optimize the number of features, which can achieve the maximum classification accuracy rate. The method depends on extracting the features that can maximize the ability to discriminate between different classes. Thus, the dimensionality of data features is reduced and the classification accuracy rate is improved. Support vector machine (SVM) is used to classify between the normal and abnormal tissues and to distinguish between benign and malignant tumors. The proposed method is validated using 5-fold cross validation. The obtained classification accuracy rates demonstrate that the proposed method could contribute to the successful detection of breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mamografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Feminino , Humanos , Reprodutibilidade dos Testes , Máquina de Vetores de Suporte , Análise de Ondaletas
3.
Comput Biol Med ; 40(4): 384-91, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20163793

RESUMO

This paper presents a comparative study between wavelet and curvelet transform for breast cancer diagnosis in digital mammogram. Using multiresolution analysis, mammogram images are decomposed into different resolution levels, which are sensitive to different frequency bands. A set of the biggest coefficients from each decomposition level is extracted. Then a supervised classifier system based on Euclidian distance is constructed. The performance of the classifier is evaluated using a 2 x 5-fold cross validation followed by a statistical analysis. The experimental results suggest that curvelet transform outperforms wavelet transform and the difference is statistically significant.


Assuntos
Neoplasias da Mama/diagnóstico , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Mamografia , Algoritmos , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...