Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(12): e0145639, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26713621

RESUMO

Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) has proven to be a powerful technique revealing complexity and diversity of natural DOM molecules, but its application to DOM analysis in grazing-impacted agricultural systems remains scarce. In the present study, we presented a case study of using ESI-FTICR-MS in analyzing DOM from four headwater streams draining forest- or pasture-dominated watersheds in Virginia, USA. In all samples, most formulas were CHO compounds (71.8-87.9%), with other molecular series (CHOS, CHON, CHONS, and CHOP (N, S)) accounting for only minor fractions. All samples were dominated by molecules falling in the lignin-like region (H/C = 0.7-1.5, O/C = 0.1-0.67), suggesting the predominance of allochthonous, terrestrial plant-derived DOM. Relative to the two pasture streams, DOM formulas in the two forest streams were more similar, based on Jaccard similarity coefficients and nonmetric multidimensional scaling calculated from Bray-Curtis distance. Formulas from the pasture streams were characterized by lower proportions of aromatic formulas and lower unsaturation, suggesting that the allochthonous versus autochthonous contributions of organic matter to streams were modified by pasture land use. The number of condensed aromatic structures (CAS) was higher for the forest streams, which is possibly due to the controlled burning in the forest-dominated watersheds and suggests that black carbon was mobilized from soils to streams. During 15-day biodegradation experiments, DOM from the two pasture streams was altered to a greater extent than DOM from the forest streams, with formulas with H/C and O/C ranges similar to protein (H/C = 1.5-2.2, O/C = 0.3-0.67), lipid (H/C = 1.5-2.0, O/C = 0-0.3), and unsaturated hydrocarbon (H/C = 0.7-1.5, O/C = 0-0.1) being the most bioreactive groups. Aromatic compound formulas including CAS were preferentially removed during combined light+bacterial incubations, supporting the contention that black carbon is labile to light alterations. Collectively, our data demonstrate that headwater DOM composition contains integrative information on watershed sources and processes, and the application of ESI-FTICR-MS technique offers additional insights into compound composition and reactivity unrevealed by fluorescence and stable carbon isotopic measurements.


Assuntos
Florestas , Análise de Fourier , Compostos Orgânicos/química , Rios/química , Espectrometria de Massas por Ionização por Electrospray , Monitoramento Ambiental , Luz
2.
Environ Sci Technol ; 49(1): 159-67, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25469724

RESUMO

In the following study, we addressed the effects of photoirradiation on the turnover of dissolved organic nitrogen (DON) from both natural and anthropogenic sources at the molecular level. Analysis of long-term photoirradiated samples via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) identified both the photolabile and the photoproduced DON from both natural and anthropogenic sources. Although photoproduction of DON was prominent with natural dissolved organic matter (DOM) sources, even in a low nitrogen environment, the anthropogenic source shows a shift from photobleaching to photohumification denoted by an increase in the average molecular weight (MW) and the double bound equivalent (DBE) after 25 days of a continuous exposure to UV light, implying condensation of low MW molecules (LMW) to form high MW (HMW) molecules. Furthermore, the sharp increase in N/C molar ratio, in the anthropogenic source, substantiates the photoinduced dissolved inorganic nitrogen (DIN) incorporation hypothesis. Hence, our findings suggest that anthropogenic input will drive substantial variation in riverine DOM and, thus, estuarine optics and photochemistry and bioavailability. Furthermore, we validate that photochemistry is one of the main processes that shapes the DON quality in aquatic systems regardless of its original source.


Assuntos
Nitrogênio/química , Processos Fotoquímicos , Rios/química , Análise de Fourier , Espectrometria de Massas , Ciclo do Nitrogênio , Compostos Orgânicos/química , Fotoquímica , Análise de Componente Principal
3.
Water Res ; 46(3): 622-34, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22172558

RESUMO

In advanced wastewater treatment plants that achieve high levels of nitrogen (N) removal, up to one-third of the N in effluent is organic, herein referred to as effluent organic N (EON). While we know that inorganic N is highly labile, it is unclear what fraction of EON is bioavailable. In this study, we demonstrate the utility of a method that can be used to examine the reactivity of EON in natural receiving waters to better understand both the ecosystem response and the potential bioavailability of EON. The technique is suitable for analyzing polar organic matter in natural waters; electrospray ionization coupled with Fourier transform mass spectrometry. Bioassays were performed on samples collected at the end of the biological process from two wastewater treatment plants achieving advanced N removal. The samples were concentrated, and then added to natural water samples collected from the oligohaline James River, a major tributary of the Chesapeake Bay. Our results demonstrate that while the lignin-like fraction of the effluent dissolved organic matter (some of which contains N) was conserved, a large portion of aliphatic and aromatic compounds containing N was removed (79-100%) during incubations, while other compounds were produced. Furthermore, the two effluents exhibited differences in the degree of degradation and type of degradation, which can be related both to the various processes employed in the two WWTPs and the dramatic differences in the type of influent they received. These findings suggest that EON is highly reactive in the natural environment and that simple assays examining net consumption or production of bulk dissolved organic N pools are inadequate for assessing the bioavailability of EON.


Assuntos
Ciclotrons , Análise de Fourier , Espectrometria de Massas/métodos , Nitrogênio/química , Compostos Orgânicos/química , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química , Biodegradação Ambiental , Íons , Rios/química , Virginia , Purificação da Água
4.
Environ Sci Technol ; 44(15): 5830-5, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20590151

RESUMO

The goal of this study was to investigate three potential ways that the soluble organic nitrogen (N) fraction of wastewater treatment plant (WWTP) effluents, termed effluent organic N (EON), could contribute to coastal eutrophication--direct biological removal, photochemical release of labile compounds, and salinity-mediated release of ammonium (NH4+). Effluents from two WWTPs were used in the experiments. For the bioassays, EON was added to water from four salinities (approximately 0 to 30) collected from the James River (VA) in August 2008, and then concentrations of N and phosphorus compounds were measured periodically over 48 h. Bioassay results, based on changes in DON concentrations, indicate that some fraction of the EON was removed and that the degree of EON removal varied between effluents and with salinity. Further, we caution that bioassay results should be interpreted within a broad context of detailed information on chemical characterization. EON from both WWTPs was also photoreactive, with labile NH4+ and dissolved primary amines released during exposure to sunlight. We also present the first data that demonstrate that when EON is exposed to higher salinities, increasing amounts of NH4+ are released, further facilitating EON use as effluent transits from freshwater through estuaries to the coast.


Assuntos
Água Doce/química , Nitrogênio/análise , Salinidade , Poluentes Químicos da Água/análise , Amônia/análise , Amônia/química , Eutrofização/efeitos dos fármacos , Nitrogênio/química , Processos Fotoquímicos , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...