Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(92): 13719-13722, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37909229

RESUMO

We report the proof-of-concept of spark plasma sintered (SPS) consolidated mesoporous composite catalytic electrodes based on nickel-copper alloys and carbon nanotubes for the electrocatalytic hydrogen evolution reaction (HER) in alkaline media. The optimized electrode (203 m2 g-1, 5 wt% Ni75Cu25) operated at -0.1 A cm-2 (current of -0.15 A) for 24 h with a stable overpotential of about 0.3 V. This newly described freestanding SPS approach allows the rational control of specific surface area, metal loading, and electrocatalytic performance, thus opening a new route to catalytic electrodes with controllable physical and catalytic properties.

2.
Materials (Basel) ; 15(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36233933

RESUMO

The reuse of industrial waste, such as electric arc furnace dust (EAFD) as reinforcement in aluminum matrix composites (AMC), is still little explored even though it has shown potential to improve the mechanical properties, such as hardness and mechanical strength, of AMCs. To propose a new alternative for EAFD recycling, AA7075-EAFD composites were produced by spark plasma sintering (SPS). The starting powders were prepared by high-energy milling with different weight fractions of EAFD in two particle size ranges added to an AA7075 matrix. SEM shows that the distribution of reinforcement particles in the matrix is homogeneous with no agglomeration of the particles. XRD patterns of initial powders and the SPS-sintered (SPSed) samples suggest that there was no reaction during sintering (no additional peaks were detected). The relative density of all SPSed samples exceeded 96.5%. The Vickers microhardness of the composites tended to increase with increasing EAFD content, increasing from 108 HV (AA7075 without reinforcement) up to 168 HV (56% increase). The maximum microhardness value was obtained when using 15 wt.% EAFD with a particle size smaller than 53 µm (called G1), showing that EAFD presents a promising potential to be applied as reinforcement in AA7075 matrix composites.

3.
Langmuir ; 38(28): 8545-8554, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35793138

RESUMO

The decoration of carbon nanotubes (CNTs) by metal nanoparticles (NPs) combines the advantages of a high specific surface material with catalytic properties of metal nanocrystals. Little work has been devoted to the decoration of CNTs with copper NPs, and no evidence of copper atomic decoration of CNTs has shown up until now. Herein, we demonstrate that the strong acidic oxidation of double-walled CNTs (dwCNTs) is very efficient for the decoration of the carbon surface by copper NPs and atoms. This treatment severely degraded the CNT walls and generated a large amount of disordered sp3 carbon. This amorphous carbon film bears many chemically active functions like carboxyl and hydroxyl ones. In such conditions, the CNT walls behave as very efficient ligands for the stabilization of copper obtained by the thermolysis of the mesityl precursor in organic solution under mild dihydrogen pressure. In addition to copper NPs, we evidenced the presence of a regular coverage with copper atoms over the dwCNTs. This nanocomposite catalyzes the quantitative synthesis of propargylamines via one A3-type coupling reaction. Five consecutive catalytic cycles with 100% yield could be performed with no loss of activity, and the combination of Cu supported on dwCNTs allows a facile recycling of the catalytic material.

4.
Nanomaterials (Basel) ; 11(11)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34835616

RESUMO

Nanostructured ß-FeSi2 and ß-Fe0.95Co0.05Si2 specimens with a relative density of up to 95% were synthesized by combining a top-down approach and spark plasma sintering. The thermoelectric properties of a 50 nm crystallite size ß-FeSi2 sample were compared to those of an annealed one, and for the former a strong decrease in lattice thermal conductivity and an upshift of the maximum Seebeck's coefficient were shown, resulting in an improvement of the figure of merit by a factor of 1.7 at 670 K. For ß-Fe0.95Co0.05Si2, one observes that the figure of merit is increased by a factor of 1.2 at 723 K between long time annealed and nanostructured samples mainly due to an increase in the phonon scattering and an increase in the point defects. This results in both a decrease in the thermal conductivity to 3.95 W/mK at 330 K and an increase in the power factor to 0.63 mW/mK2 at 723 K.

5.
Materials (Basel) ; 14(2)2021 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467156

RESUMO

AA7075 aluminum alloy is widely used for several high-technology applications for its high mechanical strength to weight ratio but is still the subject of several studies seeking a further increase in its mechanical properties. A commercial powder is used, either as-received or after ball-milling. Dense AA7075 samples are prepared in one step by Spark Plasma Sintering, at 550 °C with a holding time of 15 min and a uniaxial pressure of 100 MPa. No additional heat treatment is performed. Laser granulometry, X-ray diffraction and optical- and scanning electron microscopy show that both grain size and morphology are preserved in the dense samples, due to the relatively low temperature and short sintering time used. The samples prepared using the ball-milled powder exhibit both higher Vickers microhardness and transverse fracture strength values than those prepared using the raw powder, reflecting the finer microstructure.

6.
Langmuir ; 35(44): 14194-14202, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31550887

RESUMO

Access to removable nanocomposite electrodes for electrosensing of pollutants is of great importance. However, the preparation of reproducible and reliable carbon electrodes decorated with metallic nanoparticles, a prerequisite for trustworthy devices, remains a challenge. Here we describe an innovative and easy method to prepare such electrodes. These latter are silicon-coated with a thin carbon film on which controlled silver nanostructures are grafted. Different silver nanostructures and surface coverage of the carbon electrode (16, 36, 51, and 67%) can be obtained through a careful control of the time of the hydrogenolysis of the N-N' isopropyl butylamidinate silver organometallic precursor (t = 1, 5, 15, and 60 min, respectively). Importantly, all nanocomposite surfaces are efficient for the electrodetection of 4-nitrophenol with a remarkable decrease of the overpotential of the reduction of such molecule up to 330 mV. The surfaces are characterized by atomic force microscopy, grazing incidence X-ray diffraction, scanning electronic microscopy, and Raman spectroscopy. Furthermore, surface-enhanced Raman scattering effect is also observed. The exaltation of the Raman intensity is proportional to the surface coverage of the electrode; the number of hot spots increases with the surface coverage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA