Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 171(1): 359-68, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26966170

RESUMO

trans-Acting small interfering RNAs (tasiRNAs) participate in the regulation of organ morphogenesis and determination of developmental timing in plants by down-regulating target genes through mRNA cleavage. The production of tasiRNAs is triggered by microRNA173 (miR173) and other specific microRNA-mediated cleavage of 5'-capped and 3'-polyadenylated primary TAS transcripts (pri-TASs). Although pri-TASs are not thought to encode functional proteins, they contain multiple short open reading frames (ORFs). For example, the primary TAS2 transcript (pri-TAS2) contains 11 short ORFs, and the third ORF from the 5' terminus (ORF3) encompasses the miR173 target site. Here, we show that nonsense mutations in ORF3 of pri-TAS2 upstream of the miR173 recognition site suppress tasiRNA accumulation and that ORF3 is translated in vitro. Glycerol gradient centrifugation analysis of Arabidopsis (Arabidopsis thaliana) plant extracts revealed that pri-TAS2 and its miR173-cleaved 5' and 3' fragments are fractionated together in the polysome fractions. These and previous results suggest that the 3' fragment of pri-TAS2, which is a source of tasiRNAs, forms a huge complex containing SGS3, miR173-programmed AGO1 RNA-induced silencing complex, the 5' fragment, and ribosomes. This complex overaccumulated, moderately accumulated, and did not accumulate in rdr6, sde5, and sgs3 mutants, respectively. The sgs3 sde5 and rdr6 sde5 double mutants showed phenotypes similar to those of sgs3 and sde5 single mutants, respectively, with regard to the TAS2-related RNA accumulation, suggesting that the complex is formed in an SGS3-dependent manner, somehow modified and stabilized by SDE5, and becomes competent for RDR6 action. Ribosomes in this complex likely play an important role in this process.


Assuntos
Arabidopsis/genética , MicroRNAs/genética , Fases de Leitura Aberta , RNA Interferente Pequeno/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Biossíntese de Proteínas , RNA de Plantas , RNA Interferente Pequeno/genética , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribossomos/genética , Nicotiana/genética
2.
PLoS Pathog ; 8(10): e1002975, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23093939

RESUMO

During antagonistic coevolution between viruses and their hosts, viruses have a major advantage by evolving more rapidly. Nevertheless, viruses and their hosts coexist and have coevolved, although the processes remain largely unknown. We previously identified Tm-1 that confers resistance to Tomato mosaic virus (ToMV), and revealed that it encodes a protein that binds ToMV replication proteins and inhibits RNA replication. Tm-1 was introgressed from a wild tomato species Solanum habrochaites into the cultivated tomato species Solanum lycopersicum. In this study, we analyzed Tm-1 alleles in S. habrochaites. Although most part of this gene was under purifying selection, a cluster of nonsynonymous substitutions in a small region important for inhibitory activity was identified, suggesting that the region is under positive selection. We then examined the resistance of S. habrochaites plants to ToMV. Approximately 60% of 149 individuals from 24 accessions were resistant to ToMV, while the others accumulated detectable levels of coat protein after inoculation. Unexpectedly, many S. habrochaites plants were observed in which even multiplication of the Tm-1-resistance-breaking ToMV mutant LT1 was inhibited. An amino acid change in the positively selected region of the Tm-1 protein was responsible for the inhibition of LT1 multiplication. This amino acid change allowed Tm-1 to bind LT1 replication proteins without losing the ability to bind replication proteins of wild-type ToMV. The antiviral spectra and biochemical properties suggest that Tm-1 has evolved by changing the strengths of its inhibitory activity rather than diversifying the recognition spectra. In the LT1-resistant S. habrochaites plants inoculated with LT1, mutant viruses emerged whose multiplication was not inhibited by the Tm-1 allele that confers resistance to LT1. However, the resistance-breaking mutants were less competitive than the parental strains in the absence of Tm-1. Based on these results, we discuss possible coevolutionary processes of ToMV and Tm-1.


Assuntos
Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Tobamovirus/genética , Tobamovirus/fisiologia , Sequência de Aminoácidos , Evolução Biológica , Evolução Molecular , Solanum lycopersicum/imunologia , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Mutação , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Proteínas de Plantas/química , Ligação Proteica , RNA Viral/biossíntese , RNA Viral/genética , RNA Viral/metabolismo , Seleção Genética , Replicação Viral
3.
Virology ; 434(1): 118-28, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23062762

RESUMO

The 130-kDa and 180-kDa replication proteins of Tomato mosaic virus (ToMV) covalently bind guanylate and transfer it to the 5' end of RNA to form a cap. We found that guanylylation-competent ToMV replication proteins are in membrane-bound, disulfide-linked complexes. Guanylylation-competent replication proteins of Brome mosaic virus and Cucumber mosaic virus behaved similarly. To investigate the roles of disulfide bonding in the functioning of ToMV replication proteins, each of the 19 cysteine residues in the 130-kDa protein was replaced by a serine residue. Interestingly, three mutant proteins (C179S, C186S and C581S) failed not only to be guanylylated, but also to bind to the replication template and membranes. These mutants could trans-complement viral RNA replication. Considering that ToMV replication proteins recognize the replication templates, bind membranes, and are guanylylated in the cytoplasm that provides a reducing condition, we discuss the roles of cysteine residues and disulfide bonds in ToMV RNA replication.


Assuntos
Dissulfetos/análise , Tobamovirus/química , Proteínas Virais/química , Substituição de Aminoácidos , Bromovirus/química , Cucumovirus/química , Cisteína/genética , Guanosina Monofosfato/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Serina/genética , Nicotiana/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/fisiologia , Replicação Viral
4.
PLoS Pathog ; 8(8): e1002882, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927818

RESUMO

Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant's defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is nondegradable in plants, it is reasonable that many fungal plant pathogens utilize α-1,3-glucan in the innate immune evasion mechanism and some in maintaining the structures.


Assuntos
Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Glucanos/metabolismo , Magnaporthe/enzimologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Basidiomycota/genética , Proteínas Fúngicas/genética , Glucanos/genética , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Magnaporthe/genética , Magnaporthe/patogenicidade , Oryza/genética , Doenças das Plantas/genética
5.
EMBO J ; 31(2): 267-78, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22045333

RESUMO

Posttranscriptional gene silencing is mediated by RNA-induced silencing complexes (RISCs) that contain AGO proteins and single-stranded small RNAs. The assembly of plant AGO1-containing RISCs depends on the molecular chaperone HSP90. Here, we demonstrate that cyclophilin 40 (CYP40), protein phosphatase 5 (PP5), and several other proteins with the tetratricopeptide repeat (TPR) domain associates with AGO1 in an HSP90-dependent manner in extracts of evacuolated tobacco protoplasts (BYL). Intriguingly, CYP40, but not the other TPR proteins, could form a complex with small RNA duplex-bound AGO1. Moreover, CYP40 that was synthesized by in-vitro translation using BYL uniquely facilitated binding of small RNA duplexes to AGO1, and as a result, increased the amount of mature RISCs that could cleave target RNAs. CYP40 was not contained in mature RISCs, indicating that the association is transient. Addition of PP5 or cyclophilin-binding drug cyclosporine A prevented the association of endogenous CYP40 with HSP90-AGO1 complex and inhibited RISC assembly. These results suggest that a complex of AGO1, HSP90, CYP40, and a small RNA duplex is a key intermediate of RISC assembly in plants.


Assuntos
Proteínas Argonautas/metabolismo , Ciclofilinas/fisiologia , Proteínas de Choque Térmico HSP90/fisiologia , Nicotiana/metabolismo , Proteínas de Plantas/fisiologia , Interferência de RNA/fisiologia , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Peptidil-Prolil Isomerase F , Ciclosporina/farmacologia , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Complexo de Inativação Induzido por RNA/efeitos dos fármacos , Proteínas de Ligação a Tacrolimo/metabolismo , Nicotiana/genética
6.
PLoS Pathog ; 7(12): e1002409, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22174675

RESUMO

Tomato mosaic virus (ToMV), like other eukaryotic positive-strand RNA viruses, replicates its genomic RNA in replication complexes formed on intracellular membranes. Previous studies showed that a host seven-pass transmembrane protein TOM1 is necessary for efficient ToMV multiplication. Here, we show that a small GTP-binding protein ARL8, along with TOM1, is co-purified with a FLAG epitope-tagged ToMV 180K replication protein from solubilized membranes of ToMV-infected tobacco (Nicotiana tabacum) cells. When solubilized membranes of ToMV-infected tobacco cells that expressed FLAG-tagged ARL8 were subjected to immunopurification with anti-FLAG antibody, ToMV 130K and 180K replication proteins and TOM1 were co-purified and the purified fraction showed RNA-dependent RNA polymerase activity that transcribed ToMV RNA. From uninfected cells, TOM1 co-purified with FLAG-tagged ARL8 less efficiently, suggesting that a complex containing ToMV replication proteins, TOM1, and ARL8 are formed on membranes in infected cells. In Arabidopsis thaliana, ARL8 consists of four family members. Simultaneous mutations in two specific ARL8 genes completely inhibited tobamovirus multiplication. In an in vitro ToMV RNA translation-replication system, the lack of either TOM1 or ARL8 proteins inhibited the production of replicative-form RNA, indicating that TOM1 and ARL8 are required for efficient negative-strand RNA synthesis. When ToMV 130K protein was co-expressed with TOM1 and ARL8 in yeast, RNA 5'-capping activity was detected in the membrane fraction. This activity was undetectable or very weak when the 130K protein was expressed alone or with either TOM1 or ARL8. Taken together, these results suggest that TOM1 and ARL8 are components of ToMV RNA replication complexes and play crucial roles in a process toward activation of the replication proteins' RNA synthesizing and capping functions.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Interações Hospedeiro-Parasita/genética , Nicotiana/virologia , Proteínas de Plantas/metabolismo , Vírus do Mosaico do Tabaco/metabolismo , Proteínas Virais/metabolismo , Linhagem Celular , Cromatografia Líquida , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas em Tandem , Proteínas Virais/genética , Replicação Viral/genética
7.
J Plant Physiol ; 168(10): 1142-5, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21310506

RESUMO

The Tm-2 gene of tomato and its allelic gene, Tm-2(2), confer resistance to Tomato mosaic virus (ToMV) and encode a member of the coiled-coil/nucleotide binding-ARC/leucine-rich repeat (LRR) protein class of plant resistance (R) genes. Despite exhibiting only four amino acid differences between the products of Tm-2 and Tm-2(2), Tm-2(2) confers resistance to ToMV mutant B7, whereas Tm-2 is broken by ToMV-B7. An Agrobacterium-mediated transient expression system was used to study the mechanism of differential recognition of the movement proteins (MPs), an avirulence factor for ToMV resistance, of ToMV-B7 by Tm-2 and Tm-2(2). Although resistance induced by Tm-2 and Tm-2(2) is not usually accompanied by hypersensitive response (HR), Tm-2 and Tm-2(2) induced HR-like cell death by co-expression with MP of a wild-type ToMV, a strain that causes resistance for these R genes, and Tm-2(2) but not Tm-2 induced cell death with B7-MP in this system. Site-directed amino acid mutagenesis revealed that Tyr-767 in the LRR of Tm-2(2) is required for the specific recognition of the B7-MP. These results suggest that the Tyr residue in LRR contributes to the recognition of B7-MP, and that Tm-2 and Tm-2(2) are involved in HR cell death.


Assuntos
Proteínas de Transporte/genética , Nicotiana/genética , Nicotiana/virologia , Proteínas de Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Solanum lycopersicum/genética , Tobamovirus/metabolismo , Alelos , Substituição de Aminoácidos , Morte Celular , Análise Mutacional de DNA , DNA Complementar/genética , Genes de Plantas/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Mutagênese Sítio-Dirigida , Oligopeptídeos , Fragmentos de Peptídeos , Peptídeos , Proteínas de Plantas/metabolismo , Proteínas do Movimento Viral em Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , RNA de Plantas/genética , Proteínas Recombinantes de Fusão , Nicotiana/metabolismo , Tobamovirus/genética , Azul Tripano
8.
J Virol ; 85(4): 1893-5, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21106731

RESUMO

Natural isolates of Tobacco mild green mosaic virus (TMGMV) fail to infect tomato because the tomato tm-1 protein binds to the replication proteins of TMGMV and prevents RNA replication. Previously, we isolated a TMGMV mutant that overcomes tm-1-mediated resistance and multiplies in tomato plants. Here, we show that the causal mutations in the replication protein gene that abolish the interaction with tm-1 reduce its ability to suppress RNA silencing in host plant Nicotiana benthamiana. The results suggest that the multifunctionality of the replication proteins is an evolutionary constraint of tobamoviruses that restricts their host ranges.


Assuntos
Especificidade de Hospedeiro , Nicotiana/virologia , Interferência de RNA , Solanum lycopersicum/virologia , Tobamovirus/fisiologia , Replicação Viral , Mutação , Doenças das Plantas/virologia , RNA Viral/genética , RNA Viral/metabolismo , Tobamovirus/genética , Tobamovirus/patogenicidade , Proteínas Virais/genética , Proteínas Virais/metabolismo , Virulência
9.
Mol Plant Microbe Interact ; 23(8): 1032-41, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20615114

RESUMO

Infection of tobacco cultivars possessing the N resistance gene with Tobacco mosaic virus (TMV) results in confinement of the virus by necrotic lesions at the infection site. Although the mitogen-activated protein kinases WIPK and SIPK have been implicated in TMV resistance, evidence linking them directly to disease resistance is, as yet, insufficient. Viral multiplication was reduced slightly in WIPK- or SIPK-silenced plants but substantially in WIPK/SIPK-silenced plants, and was correlated with an increase in salicylic acid (SA) and a decrease in jasmonic acid (JA). Silencing of WIPK and SIPK in a tobacco cultivar lacking the N gene did not inhibit viral accumulation. The reduction in viral accumulation was attenuated by expressing a gene for an SA-degrading enzyme or by exogenously applying JA. Inoculation of lower leaves resulted in the systemic spread of TMV and formation of necrotic lesions in uninoculated upper leaves. These results suggested that WIPK and SIPK function to negatively regulate local resistance to TMV accumulation, partially through modulating accumulation of SA and JA in an N-dependent manner, but positively regulate systemic resistance.


Assuntos
Inativação Gênica , Imunidade Inata/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Nicotiana/genética , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Cinética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Movimento , Necrose , Doenças das Plantas/genética , Doenças das Plantas/virologia , Folhas de Planta/enzimologia , Folhas de Planta/virologia , Plantas Geneticamente Modificadas/genética , Temperatura , Termodinâmica , Vírus do Mosaico do Tabaco/enzimologia , Vírus do Mosaico do Tabaco/fisiologia
10.
Mol Cell ; 39(2): 282-91, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20605502

RESUMO

RNA-induced silencing complexes (RISCs) play central roles in posttranscriptional gene silencing. In plants, the mechanism of RISC assembly has remained elusive due to the lack of cell-free systems that recapitulate the process. In this report, we demonstrate that plant AGO1 protein synthesized by in vitro translation using an extract of evacuolated tobacco protoplasts incorporates synthetic small interfering RNA (siRNA) and microRNA (miRNA) duplexes to form RISCs that sequester the single-stranded siRNA guide strand and miRNA strand, respectively. The formed RISCs were able to recognize and cleave the complementary target RNAs. In this system, the siRNA duplex was incorporated into HSP90-bound AGO1, and subsequent removal of the passenger strand was triggered by ATP hydrolysis by HSP90. Removal of the siRNA passenger strand required the ribonuclease activity of AGO1, while that of the miRNA star strand did not. Based on these results, the mechanism of plant RISC formation is discussed.


Assuntos
Fatores de Iniciação em Eucariotos/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Complexos Multiproteicos/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Sequência de Bases , Sistema Livre de Células/metabolismo , Fatores de Iniciação em Eucariotos/genética , Inativação Gênica/fisiologia , Proteínas de Choque Térmico HSP90/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Proteínas de Plantas/genética , Protoplastos/citologia , Protoplastos/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Complexo de Inativação Induzido por RNA/genética , Nicotiana/citologia , Nicotiana/genética
11.
Arch Virol ; 155(3): 297-303, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20035436

RESUMO

An inducible virus infection system was demonstrated to be an efficient protein expression system for inducing synchronous virus vector multiplication in suspension-cultured plant cells. A GFP-tagged tomato mosaic virus (ToMV-GFP) derivative that has a defect in its 130 K protein, a silencing suppressor of ToMV, was synchronously infected to tobacco BY2 cultured cells using this system. In the infection-induced cells, viral RNA was degraded rapidly, and a cytosol extract prepared from the infected cells showed RNA degradation activity specific for ToMV- or GFP-related sequences. In lysate prepared from cells infected by ToMV-GFP carrying the wild-type 130 K protein, sequence-specific RNA degradation activity was suppressed, although siRNA derived from the virus was generated. Furthermore, the 130 K protein interfered with 3'-end methylation of siRNA. The inducible virus infection system may provide a method for biochemical analysis of antiviral RNA silencing and silencing suppression by ToMV.


Assuntos
Interações Hospedeiro-Patógeno , Nicotiana/virologia , Interferência de RNA , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Viral/antagonistas & inibidores , Tobamovirus/crescimento & desenvolvimento , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Estabilidade de RNA , Coloração e Rotulagem/métodos , Tobamovirus/genética , Proteínas Virais/genética , Replicação Viral
12.
Proc Natl Acad Sci U S A ; 106(21): 8778-83, 2009 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-19423673

RESUMO

Any individual virus can infect only a limited range of hosts, and most plant species are "nonhosts" to a given virus; i.e., all members of the species are insusceptible to the virus. In nonhost plants, the factors that control virus resistance are not genetically tractable, and how the host range of a virus is determined remains poorly understood. Tomato (Solanum lycopersicum) is a nonhost species for Tobacco mild green mosaic virus (TMGMV) and Pepper mild mottle virus (PMMoV), members of the genus Tobamovirus. Previously, we identified Tm-1, a resistance gene of tomato to another tobamovirus, Tomato mosaic virus (ToMV), and found that Tm-1 binds to ToMV replication proteins to inhibit RNA replication. Tm-1 is derived from a wild tomato species, S. habrochaites, and ToMV-susceptible tomato cultivars have the allelic gene tm-1. The tm-1 protein can neither bind to ToMV replication proteins nor inhibit ToMV multiplication. Here, we show that transgenic tobacco plants expressing tm-1 exhibit resistance to TMGMV and PMMoV. The tm-1 protein bound to the replication proteins of TMGMV and PMMoV and inhibited their RNA replication in vitro. In one of the tm-1-expressing tobacco plants, a tm-1-insensitive TMGMV mutant emerged. In tomato protoplasts, this mutant TMGMV multiplied as efficiently as ToMV. However, in tomato plants, the mutant TMGMV multiplied with lower efficiency compared to ToMV and caused systemic necrosis. These results suggest that an inhibitory interaction between the replication proteins and tm-1 underlies a multilayered resistance mechanism to TMGMV in tomato.


Assuntos
Doenças das Plantas/virologia , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/virologia , Tobamovirus/metabolismo , Proteínas Virais/metabolismo , Adaptação Biológica , Regulação Viral da Expressão Gênica , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Mutação/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ligação Proteica , RNA Viral/genética , Tobamovirus/genética , Proteínas Virais/genética , Replicação Viral/genética
13.
Mol Plant Pathol ; 10(2): 161-73, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19236566

RESUMO

Tomato mosaic virus (ToMV) encodes a movement protein (MP) that is necessary for virus cell-to-cell movement. We have demonstrated previously that KELP, a putative transcriptional coactivator of Arabidopsis thaliana, and its orthologue from Brassica campestris can bind to ToMV MP in vitro. In this study, we examined the effects of the transient over-expression of KELP on ToMV infection and the intracellular localization of MP in Nicotiana benthamiana, an experimental host of the virus. In co-bombardment experiments, the over-expression of KELP inhibited virus cell-to-cell movement. The N-terminal half of KELP (KELPdC), which had been shown to bind to MP, was sufficient for inhibition. Furthermore, the over-expression of KELP and KELPdC, both of which were co-localized with ToMV MP, led to a reduction in the plasmodesmal association of MP. In the absence of MP expression, KELP was localized in the nucleus and the cytoplasm by the localization signal in its N-terminal half. It was also shown that ToMV amplified normally in protoplasts prepared from leaf tissue that expressed KELP transiently. These results indicate that over-expressed KELP interacts with MP in vivo and exerts an inhibitory effect on MP function for virus cell-to-cell movement, but not on virus amplification in individual cells.


Assuntos
Proteínas de Arabidopsis/metabolismo , Nicotiana/citologia , Nicotiana/virologia , Vírus de Plantas/fisiologia , Transativadores/metabolismo , Proteínas do Capsídeo/metabolismo , Espaço Intracelular/metabolismo , Espaço Intracelular/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Transporte Proteico , Protoplastos/virologia , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Replicação Viral
14.
Virology ; 376(1): 132-9, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18440043

RESUMO

A plant integral membrane protein TOM1 is involved in the multiplication of Tomato mosaic virus (ToMV). TOM1 interacts with ToMV replication proteins and has been suggested to tether the replication proteins to the membranes where the viral RNA synthesis takes place. We have previously demonstrated that inactivation of TOM1 results in reduced ToMV multiplication. In the present study, we show that overexpression of TOM1 in tobacco also inhibits ToMV propagation. TOM1 overexpression led to a decreased accumulation of the soluble form of the replication proteins and interfered with the ability of the replication protein to suppress RNA silencing. The reduced accumulation of the soluble replication proteins was also observed in a silencing suppressor-defective ToMV mutant. Based on these results, we propose that RNA silencing suppression is executed by the soluble form of the replication proteins and that efficient ToMV multiplication requires balanced accumulation of the soluble and membrane-bound replication proteins.


Assuntos
Dosagem de Genes , Nicotiana/virologia , Proteínas de Plantas/biossíntese , Tobamovirus/crescimento & desenvolvimento , Tobamovirus/fisiologia , Antivirais/metabolismo , Antivirais/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Nicotiana/genética , Tobamovirus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia
15.
J Virol ; 82(7): 3250-60, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18216118

RESUMO

Mosaic is a common disease symptom caused by virus infection in plants. Mosaic leaves of Tomato mosaic virus (ToMV)-infected tobacco plants consist of yellow-green and dark green tissues that contain large and small numbers of virions, respectively. Although the involvement of RNA silencing in mosaic development has been suggested, its role in the process that results in an uneven distribution of the virus is unknown. Here, we investigated whether and where ToMV-directed RNA silencing was established in tobacco mosaic leaves. When transgenic tobaccos defective in RNA silencing were infected with ToMV, little or no dark green tissue appeared, implying the involvement of RNA silencing in mosaic development. ToMV-related small interfering RNAs were rarely detected in the dark green areas of the first mosaic leaves, and their interior portions were susceptible to infection. Thus, ToMV-directed RNA silencing was not effective there. By visualizing the cells where ToMV-directed RNA silencing was active, it was found that the effective silencing occurs only in the marginal regions of the dark green tissue ( approximately 0.5 mm in width) and along the major veins. Further, the cells in the margins were resistant against recombinant potato virus X carrying a ToMV-derived sequence. These findings demonstrate that RNA silencing against ToMV is established in the cells located at the margins of the dark green areas, restricting the expansion of yellow-green areas, and consequently defines the mosaic pattern. The mechanism of mosaic symptom development is discussed in relation to the systemic spread of the virus and RNA silencing.


Assuntos
Nicotiana/imunologia , Nicotiana/virologia , Folhas de Planta/imunologia , Folhas de Planta/virologia , Interferência de RNA , Tobamovirus/crescimento & desenvolvimento , Dados de Sequência Molecular , Folhas de Planta/química , Plantas Geneticamente Modificadas/virologia , Potexvirus/genética , RNA Interferente Pequeno/análise , RNA Interferente Pequeno/genética , Análise de Sequência de DNA , Nicotiana/química , Tobamovirus/genética
17.
Proc Natl Acad Sci U S A ; 104(34): 13833-8, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17699618

RESUMO

The tomato Tm-1 gene confers resistance to tomato mosaic virus (ToMV). Here, we report that the extracts of Tm-1 tomato cells (GCR237) have properties that inhibit the in vitro RNA replication of WT ToMV more strongly than that of the Tm-1-resistance-breaking mutant of ToMV, LT1. We purified this inhibitory activity and identified a polypeptide of approximately 80 kDa (p80(GCR237)) using LC-tandem MS. The amino acid sequence of p80(GCR237) had no similarity to any characterized proteins. The p80(GCR237) gene cosegregated with Tm-1; transgenic expression of p80(GCR237) conferred resistance to ToMV within tomato plants; and the knockdown of p80(GCR237) sensitized Tm-1 tomato plants to ToMV, indicating that Tm-1 encodes p80(GCR237) itself. We further show that in vitro-synthesized Tm-1 (p80(GCR237)) protein binds to the replication proteins of WT ToMV and inhibits their function at a step before, but not after, the viral replication complex is formed on the membrane surfaces. Such binding was not observed for the replication proteins of LT1. These results suggest that Tm-1 (p80(GCR237)) inhibits the replication of WT ToMV RNA through binding to the replication proteins.


Assuntos
Genes de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Viral/biossíntese , Solanum lycopersicum/genética , Solanum lycopersicum/virologia , Replicação Viral/genética , Extratos Celulares , Linhagem Celular , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Viral/genética
18.
Mol Plant Microbe Interact ; 20(6): 671-81, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17555275

RESUMO

The 3a movement protein (MP) plays a central role in the movement of the RNA plant virus, Brome mosaic virus (BMV). To identify host factor genes involved in viral movement, a cDNA library of Nicotiana benthamiana, a systemic host for BMV, was screened with far-Western blotting using a recombinant BMV MP as probe. One positive clone encoded a protein with sequence similarity to the alpha chain of nascent-polypeptide-associated complex from various organisms, which is proposed to contribute to the fidelity of translocation of newly synthesized proteins. The orthologous gene from N. benthamiana was designated NbNACa1. The binding of NbNACa1 to BMV MP was confirmed in vivo with an agroinfiltration-immunoprecipitation assay. To investigate the involvement of NbNACa1 in BMV multiplication, NbNACa1-silenced (GSNAC) transgenic N. benthamiana plants were produced. Downregulation of NbNACa1 expression reduced virus accumulation in inoculated leaves but not in protoplasts. A microprojectile bombardment assay to monitor BMV-MP-assisted viral movement demonstrated reduced virus spread in GSNAC plants. The localization to the cell wall of BMV MP fused to green fluorescent protein was delayed in GSNAC plants. From these results, we propose that NbNACa1 is involved in BMV cell-to-cell movement through the regulation of BMV MP localization to the plasmodesmata.


Assuntos
Bromovirus/fisiologia , Regulação para Baixo/genética , Genes de Plantas , Nicotiana/genética , Nicotiana/virologia , Proteínas de Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Transporte Biológico , Far-Western Blotting , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Inativação Gênica , Dados de Sequência Molecular , Folhas de Planta/virologia , Plantas Geneticamente Modificadas , Ligação Proteica , Protoplastos/virologia , Nicotiana/citologia , Vírus do Mosaico do Tabaco/fisiologia , Replicação Viral
19.
Phytopathology ; 97(4): 412-20, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18943281

RESUMO

ABSTRACT Pepper mild mottle virus (PMMoV) infects pepper plants, causing mosaic symptoms on the upper developing leaves. We investigated the relationship between a virus pathogenicity determinant domain and the appearance of mosaic symptoms. Genetically modified PMMoV mutants were constructed, which had a base substitution in the 130K replication protein gene causing an amino acid change or a truncation of the 3' terminal pseudoknot structure. Only one substitution mutant (at amino acid residue 349) failed to cause symptoms, although its accumulation was relatively high. Conversely, the pseudoknot mutants showed the lower accumulation, but they still caused mosaic symptoms as severe as the wild-type virus. Therefore, the level of virus accumulation in a plant does not necessarily correlate with the development of mosaic symptoms. The activity to suppress posttranscriptional gene silencing (PTGS) was impaired in the asymptomatic mutant. Consequently, pathogenicity causing mosaic symptoms should be controlled by combat between host PTGS and its suppression by the 130K replication protein rather than virus accumulation.

20.
J Virol ; 80(17): 8459-68, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16912296

RESUMO

Extracts of vacuole-depleted, tomato mosaic virus (ToMV)-infected plant protoplasts contained an RNA-dependent RNA polymerase (RdRp) that utilized an endogenous template to synthesize ToMV-related positive-strand RNAs in a pattern similar to that observed in vivo. Despite the fact that only minor fractions of the ToMV 130- and 180-kDa replication proteins were associated with membranes, the RdRp activity was exclusively associated with membranes. A genome-sized, negative-strand RNA template was associated with membranes and was resistant to micrococcal nuclease unless treated with detergents. Non-membrane-bound replication proteins did not exhibit RdRp activity, even in the presence of ToMV RNA. While the non-membrane-bound replication proteins remained soluble after treatment with Triton X-100, the same treatment made the membrane-bound replication proteins in a form that precipitated upon low-speed centrifugation. On the other hand, the detergent lysophosphatidylcholine (LPC) efficiently solubilized the membrane-bound replication proteins. Upon LPC treatment, the endogenous template-dependent RdRp activity was reduced and exogenous ToMV RNA template-dependent RdRp activity appeared instead. This activity, as well as the viral 130-kDa protein and the host proteins Hsp70, eukaryotic translation elongation factor 1A (eEF1A), TOM1, and TOM2A copurified with FLAG-tagged viral 180-kDa protein from LPC-solubilized membranes. In contrast, Hsp70 and only small amounts of the 130-kDa protein and eEF1A copurified with FLAG-tagged non-membrane-bound 180-kDa protein. These results suggest that the viral replication proteins are associated with the intracellular membranes harboring TOM1 and TOM2A and that this association is important for RdRp activity. Self-association of the viral replication proteins and their association with other host proteins may also be important for RdRp activity.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/metabolismo , Tobamovirus/metabolismo , Replicação Viral , Células Cultivadas , Solanum lycopersicum/virologia , Plantas Geneticamente Modificadas , Protoplastos/virologia , Nicotiana/virologia , Tobamovirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...