Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 320, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936209

RESUMO

BACKGROUND: Human mitochondrial DNA mutations are associated with common to rare mitochondrial disorders, which are multisystemic with complex clinical pathologies. The pathologies of these diseases are poorly understood and have no FDA-approved treatments leading to symptom management. Leigh syndrome (LS) is a pediatric mitochondrial disorder that affects the central nervous system during early development and causes death in infancy. Since there are no adequate models for understanding the rapid fatality associated with LS, human-induced pluripotent stem cell (hiPSC) technology has been recognized as a useful approach to generate patient-specific stem cells for disease modeling and understanding the origins of the phenotype. METHODS: hiPSCs were generated from control BJ and four disease fibroblast lines using a cocktail of non-modified reprogramming and immune evasion mRNAs and microRNAs. Expression of hiPSC-associated intracellular and cell surface markers was identified by immunofluorescence and flow cytometry. Karyotyping of hiPSCs was performed with cytogenetic analysis. Sanger and next-generation sequencing were used to detect and quantify the mutation in all hiPSCs. The mitochondrial respiration ability and glycolytic function were measured by the Seahorse Bioscience XFe96 extracellular flux analyzer. RESULTS: Reprogrammed hiPSCs expressed pluripotent stem cell markers including transcription factors POU5F1, NANOG and SOX2 and cell surface markers SSEA4, TRA-1-60 and TRA-1-81 at the protein level. Sanger sequencing analysis confirmed the presence of mutations in all reprogrammed hiPSCs. Next-generation sequencing demonstrated the variable presence of mutant mtDNA in reprogrammed hiPSCs. Cytogenetic analyses confirmed the presence of normal karyotype in all reprogrammed hiPSCs. Patient-derived hiPSCs demonstrated decreased maximal mitochondrial respiration, while mitochondrial ATP production was not significantly different between the control and disease hiPSCs. In line with low maximal respiration, the spare respiratory capacity was lower in all the disease hiPSCs. The hiPSCs also demonstrated neural and cardiac differentiation potential. CONCLUSION: Overall, the hiPSCs exhibited variable mitochondrial dysfunction that may alter their differentiation potential and provide key insights into clinically relevant developmental perturbations.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Criança , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular/genética , Mutação/genética , Metabolismo Energético/genética
2.
Stem Cell Res ; 57: 102572, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34662843

RESUMO

Mitochondria are dynamic organelles with wide range of morphologies contributing to regulating different signaling pathways and several cellular functions. Leigh syndrome (LS) is a classic pediatric mitochondrial disorder characterized by complex and variable clinical pathologies, and primarily affects the nervous system during early development. It is important to understand the differences between mitochondrial morphologies in healthy and diseased states so that focused therapies can target the disease during its early stages. In this study, we performed a comprehensive analysis of mitochondrial dynamics in five patient-derived human induced pluripotent stem cells (hiPSCs) containing different mutations associated with LS. Our results suggest that subtle alterations in mitochondrial morphologies are specific to the mtDNA variant. Three out of the five LS-hiPSCs exhibited characteristics consistent with fused mitochondria. To our knowledge, this is the first comprehensive study that quantifies mitochondrial dynamics in hiPSCs specific to mitochondrial disorders. In addition, we observed an overall decrease in mitochondrial membrane potential in all five LS-hiPSCs. A more thorough analysis of the correlations between mitochondrial dynamics, membrane potential dysfunction caused by mutations in the mtDNA in hiPSCs and differentiated derivatives will aid in identifying unique morphological signatures of various mitochondrial disorders during early stages of embryonic development.

3.
Am J Physiol Cell Physiol ; 321(4): C735-C748, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34469204

RESUMO

Mitochondria are dynamic organelles that differ significantly in their morphologies across cell types, reflecting specific cellular needs and stages in development. Despite the wide biological significance in disease and in health, delineating mitochondrial morphologies in complex systems remains challenging. Here, we present the Mitochondrial Cellular Phenotype (MitoCellPhe) tool developed for quantifying mitochondrial morphologies and demonstrate its utility in delineating differences in mitochondrial morphologies in a human fibroblast and human induced pluripotent stem cell (hiPSC) line. MitoCellPhe generates 24 parameters, allowing for a comprehensive analysis of mitochondrial structures and importantly allows for quantification to be performed on mitochondria in images containing single cells or clusters of cells. With this tool, we were able to validate previous findings that show networks of mitochondria in healthy fibroblast cell lines and a more fragmented morphology in hiPSCs. Using images generated from control and diseased fibroblasts and hiPSCs, we also demonstrate the efficacy of the toolset in delineating differences in morphologies between healthy and the diseased state in both stem cell (hiPSC) and differentiated fibroblast cells. Our results demonstrate that MitoCellPhe enables high-throughput, sensitive, detailed, and quantitative mitochondrial morphological assessment and thus enables better biological insights into mitochondrial dynamics in health and disease.


Assuntos
Fibroblastos/patologia , Processamento de Imagem Assistida por Computador , Células-Tronco Pluripotentes Induzidas/patologia , Microscopia de Fluorescência , Mitocôndrias/patologia , Dinâmica Mitocondrial , Forma das Organelas , Design de Software , Linhagem Celular , Ensaios de Triagem em Larga Escala , Humanos , Fenótipo
4.
JCI Insight ; 4(15)2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391346

RESUMO

The treatment of most autoimmune diseases still relies on systemic immunosuppression and is associated with severe side effects. The development of drugs that more specifically abrogate pathogenic pathways is therefore most desirable. In nature, such specificity is exemplified, e.g., by the soft tick-derived biotherapeutic Coversin, which locally suppresses immune responses by inhibiting complement factor 5 (C5) and leukotriene B4 (LTB4). C5a, a proteolytic fragment of C5, and LTB4 are critical drivers of skin inflammation in pemphigoid diseases (PDs), a group of autoimmune blistering skin diseases. Here, we demonstrate that both Coversin and its mutated form L-Coversin, which inhibits LTB4 only, dose dependently attenuate disease in a model of bullous pemphigoid-like epidermolysis bullosa acquisita (BP-like EBA). Coversin, however, reduces disease more effectively than L-Coversin, indicating that inhibition of C5 and LTB4 synergize in their suppressing effects in this model. Further supporting the therapeutic potential of Coversin in humans, we found that C5a and LTB4 are both present in the blister fluid of patients with BP in quantities inducing the recruitment of granulocytes and that the number of cells expressing their receptors, C5aR1 and BLT1, respectively, is increased in perilesional skin. Collectively, our results highlight Coversin and possibly L-Coversin as potential therapeutics for PDs.


Assuntos
Produtos Biológicos/farmacologia , Complemento C5/antagonistas & inibidores , Inativadores do Complemento/farmacologia , Leucotrieno B4/antagonistas & inibidores , Penfigoide Bolhoso/tratamento farmacológico , Animais , Produtos Biológicos/uso terapêutico , Células Cultivadas , Quimiotaxia/efeitos dos fármacos , Quimiotaxia/imunologia , Colágeno Tipo VII/administração & dosagem , Colágeno Tipo VII/imunologia , Complemento C5/imunologia , Complemento C5/metabolismo , Inativadores do Complemento/uso terapêutico , Modelos Animais de Doenças , Granulócitos/imunologia , Voluntários Saudáveis , Humanos , Leucotrieno B4/imunologia , Leucotrieno B4/metabolismo , Masculino , Camundongos , Neutrófilos , Penfigoide Bolhoso/imunologia , Penfigoide Bolhoso/patologia , Cultura Primária de Células , Coelhos , Pele/imunologia , Pele/patologia
5.
Pharmacol Res Perspect ; 6(6): e00438, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30455959

RESUMO

ω3-polyunsaturated free fatty acids (ω3-PUFAs), particularly docosahexaenoic (DHA) and eicosapentaenoic acid (EPA), are thought to exert health promoting effects in metabolic and in inflammatory diseases. The molecular mechanisms of these beneficial effects are only partially understood. DHA and EPA activate Free Fatty Acid receptor 4 (GPR120/FFA4). Recently, the first orally available, synthetic ligand of FFA4, 3-[2-chloro-5-(trifluoromethoxy)phenyl]-3-azaspiro[5.5]undecane-9-acetic acid ("compound A"; cpd A) has been developed. Cpd A exhibits distinctly higher potency, efficiency, and selectivity at FFA4 than ω3-PUFAs and ameliorates insulin resistance and adipose tissue inflammation in the mouse. With GPR120/FFA4 activation believed to also attenuate tissue inflammation in autoimmune diseases, cpd A may also have a beneficial effect in these diseases. We have therefore addressed the therapeutic potential of cpd A in mouse models of three prototypical autoimmune diseases, specifically psoriasis, rheumatoid arthritis, and bullous pemphigoid. The effect of cpd A on the course of Aldara™-induced psoriasis-like dermatitis, K/BxN serum transfer arthritis, and antibody transfer pemphigoid disease-like dermatitis was scrutinized. Cpd A did not alter the course of Aldara-induced psoriasis-like dermatitis, K/BxN serum transfer arthritis, or antibody transfer pemphigoid disease-like dermatitis. Our results suggest that therapeutic regimens solely relying on FFA4 activation do not bear the potential to treat inflammatory diseases. With cpd A distinctly more potent in activating GPR120/FFA4 than ω3-PUFAs, this also suggests that GPR120/FFA4 activation by ω3-PUFAs does not significantly contribute to the health-promoting effects of ω3-PUFAs in autoimmune diseases.


Assuntos
Ácido Acético/administração & dosagem , Anti-Inflamatórios não Esteroides/administração & dosagem , Artrite Reumatoide/tratamento farmacológico , Compostos Aza/administração & dosagem , Penfigoide Bolhoso/tratamento farmacológico , Psoríase/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Ácido Acético/uso terapêutico , Administração Oral , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Reumatoide/imunologia , Compostos Aza/uso terapêutico , Modelos Animais de Doenças , Ácidos Graxos Ômega-3/metabolismo , Humanos , Imiquimode/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Penfigoide Bolhoso/imunologia , Psoríase/imunologia , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...