Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISA Trans ; 71(Pt 1): 51-67, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28629866

RESUMO

In this paper, distributed control reconfiguration strategies for directed switching topology networked multi-agent systems are developed and investigated. The proposed control strategies are invoked when the agents are subject to actuator faults and while the available fault detection and isolation (FDI) modules provide inaccurate and unreliable information on the estimation of faults severities. Our proposed strategies will ensure that the agents reach a consensus while an upper bound on the team performance index is ensured and satisfied. Three types of actuator faults are considered, namely: the loss of effectiveness fault, the outage fault, and the stuck fault. By utilizing quadratic and convex hull (composite) Lyapunov functions, two cooperative and distributed recovery strategies are designed and provided to select the gains of the proposed control laws such that the team objectives are guaranteed. Our proposed reconfigurable control laws are applied to a team of autonomous underwater vehicles (AUVs) under directed switching topologies and subject to simultaneous actuator faults. Simulation results demonstrate the effectiveness of our proposed distributed reconfiguration control laws in compensating for the effects of sudden actuator faults and subject to fault diagnosis module uncertainties and unreliabilities.

2.
Artigo em Inglês | MEDLINE | ID: mdl-23929876

RESUMO

Recent advances in high-throughput technologies for biological data acquisition have spurred a broad interest in the construction of mathematical models for biological phenomena. The development of such mathematical models relies on the estimation of unknown parameters of the system using the time-course profiles of different metabolites in the system. One of the main challenges in the parameter estimation of biological phenomena is the fact that the number of unknown parameters is much more than the number of metabolites in the system. Moreover, the available metabolite measurements are corrupted by noise. In this paper, a new parameter estimation algorithm is developed based on the stochastic estimation framework for nonlinear systems, namely the unscented Kalman filter (UKF). A new iterative UKF algorithm with covariance resetting is developed in which the UKF algorithm is applied iteratively to the available noisy time profiles of the metabolites. The proposed estimation algorithm is applied to noisy time-course data synthetically produced from a generic branched pathway as well as real time-course profile for the Cad system of E. coli. The simulation results demonstrate the effectiveness of the proposed scheme.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Biológicos , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Dinâmica não Linear , Razão Sinal-Ruído , Estresse Fisiológico/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-22566476

RESUMO

Measured microarray genomic and metabolic data are a rich source of information about the biological systems they represent. For example, time-series biological data can be used to construct dynamic genetic regulatory network models, which can be used to design intervention strategies to cure or manage major diseases. Also, copy number data can be used to determine the locations and extent of aberrations in chromosome sequences. Unfortunately, measured biological data are usually contaminated with errors that mask the important features in the data. Therefore, these noisy measurements need to be filtered to enhance their usefulness in practice. Wavelet-based multiscale filtering has been shown to be a powerful denoising tool. In this work, different batch as well as online multiscale filtering techniques are used to denoise biological data contaminated with white or colored noise. The performances of these techniques are demonstrated and compared to those of some conventional low-pass filters using two case studies. The first case study uses simulated dynamic metabolic data, while the second case study uses real copy number data. Simulation results show that significant improvement can be achieved using multiscale filtering over conventional filtering techniques.


Assuntos
Algoritmos , Simulação por Computador , Bases de Dados Factuais/normas , Redes Reguladoras de Genes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...