Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Neurol Sci ; 42(8): 3375-3381, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33411200

RESUMO

BACKGROUND: Altered corticospinal excitability in Parkinson's disease (PD) is related to many of the motor signs. OBJECTIVE: We examined whether the recruitment properties of the corticospinal pathway to hand muscles are changed after 8 weeks of specialized upper limbs exercise in PD. METHODS: Seven PD subjects were enrolled. Upper limb exercise was achieved by using a specially designed device. The input-output (I-O) curves were obtained by transcranial magnetic stimulation (TMS). The conduction of peripheral axons and H reflex was also recorded. UPDRS scale, part-III motor examination was used to assess the motor symptom. Clinical and neurophysiological data were obtained before and after 2-month exercise training. RESULTS: After 2-month exercise training, the UPDRS score was significantly improved. Threshold, slope, and V50 (i.e., the stimulus intensity required to obtain a response 50% of the maximum) of the I-O curve were unchanged, whereas the plateau value was significantly higher. CONCLUSIONS: Exercise training affects the larger motoneurons, that is those activated at higher TMS stimulation intensity. These motoneurones are related to the large, type II motor units. Clinical improvement after exercise may depend upon restoration of the recruitment of the large motor unit, i.e., those necessary to perform rapid and strong movements, known to be deficient in PD.


Assuntos
Doença de Parkinson , Potencial Evocado Motor , Exercício Físico , Mãos , Humanos , Músculo Esquelético , Doença de Parkinson/terapia , Estimulação Magnética Transcraniana
2.
Front Hum Neurosci ; 13: 350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31749690

RESUMO

For the management of Parkinson's disease (PD), the concept of forced exercise (FE) has drawn interest. In PD subjects, the FE executed with lower limbs has been shown to lessen symptoms and to promote brain adaptive changes. Our study is aimed to investigate the effect of an upper-limb exercise, conceptually comparable with the FE, in PD. Upper-limb exercise was achieved in a sitting position by using a specially designed device (Angel's Wings®). Clinical data, computerized dynamic posturography, magnetic resonance imaging (MRI) (resting-state MRI and arterial spin labeling), and neuropsychological tests were used before and after 2 months' exercise training. We found a significant long-lasting improvement in Unified Parkinson Disease Rating Scale (UPDRS)-III and cognitive scales, along with improvement in balance and postural control (better alignment of the gravity center and improvement in weight symmetry and in anticipatory motor strategies). Computerized dynamic posturography pointed out an enhanced central ability to integrate the vestibular signals with afferents from other sensory systems. Neuroimaging analyses after 2 months' exercise training showed, with respect to pretraining condition, many changes. An increase of the cerebral blood flow was evident in the left primary motor cortex (M1), left supplementary motor cortical area, and left cerebellar cortex. The bilateral globus pallidus showed an increased functional connectivity to the right central operculum, right posterior cingulate gyrus, and left sensorimotor cortex. Seed-to-voxel analysis demonstrated a functional connectivity between M1 and the left superior frontal gyrus. Left crus II showed strengthened connections with the left pre-rolandic area, left post-rolandic area, and left supramarginal area. These findings likely reflect compensatory mechanisms to the neuropathological hallmark of PD. Overall, our results show that this upper-limb exercise model, conceptually comparable with the FE already tested in the lower limbs, leads to a global improvement (involving non-exercised limbs) likely consistent with the functional changes observed in the central nervous system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...