Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(9)2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31052478

RESUMO

The synaptic vesicle protein 2 (SV2) is involved in synaptic vesicle trafficking. The SV2A isoform is the most studied and its implication in epilepsy therapy led to the development of the first SV2A PET radiotracer [18F]UCB-H. The objective of this study was to evaluate in vivo, using microPET in rats, the specificity of [18F]UCB-H for SV2 isoform A in comparison with the other two isoforms (B and C) through a blocking assay. Twenty Sprague Dawley rats were pre-treated either with the vehicle, or with specific competitors against SV2A (levetiracetam), SV2B (UCB5203) and SV2C (UCB0949). The distribution volume (Vt, Logan plot, t* 15 min) was obtained with a population-based input function. The Vt analysis for the entire brain showed statistically significant differences between the levetiracetam group and the other groups (p < 0.001), but also between the vehicle and the SV2B group (p < 0.05). An in-depth Vt analysis conducted for eight relevant brain structures confirmed the statistically significant differences between the levetiracetam group and the other groups (p < 0.001) and highlighted the superior and the inferior colliculi along with the cortex as regions also displaying statistically significant differences between the vehicle and SV2B groups (p < 0.05). These results emphasize the in vivo specificity of [18F]UCB-H for SV2A against SV2B and SV2C, confirming that [18F]UCB-H is a suitable radiotracer for in vivo imaging of the SV2A proteins with PET.


Assuntos
Encéfalo/diagnóstico por imagem , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Piridinas/metabolismo , Pirrolidinonas/metabolismo , Animais , Encéfalo/metabolismo , Levetiracetam/administração & dosagem , Levetiracetam/farmacologia , Imageamento por Ressonância Magnética , Masculino , Modelos Animais , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Piridinas/química , Pirrolidinonas/química , Ratos , Ratos Sprague-Dawley , Sensibilidade e Especificidade
2.
Alzheimers Dement (N Y) ; 3(4): 481-486, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29124105

RESUMO

INTRODUCTION: Brain distribution of synaptic vesicle protein 2A was measured with fluorine-18 UCB-H ([18F]UCB-H) and positron emission tomography (PET). METHODS: Images of synaptic density were acquired in healthy volunteers (two young participants and two seniors). Input function was measured by arterial blood sampling (arterial input function) and derived from PET images using carotid activity (image-derived input function). Logan graphical analysis was used to estimate regional synaptic vesicle protein 2A distribution volume. RESULTS: [18F]UCB-H uptake was ubiquitous in cortical and subcortical gray matter. Arterial input function and image-derived input function provided regional distribution volume with a high linear relationship. DISCUSSION: The cerebral distribution of [18F]UCB-H is similar to that recently observed with carbon-11 UCB-J ([11C]UCB-J). An accurate [18F]UCB-H quantification can be performed without invasive arterial blood sampling when no suitable reference region is available, using dynamic PET carotid activity. Brain synaptic density can be studied in vivo in normal and pathological aging.

3.
Nucl Med Biol ; 43(6): 325-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27260773

RESUMO

INTRODUCTION: Development of a selective and specific high affinity PET tracer, [(11)C]UCB-A, for the in vivo study of SV2A expression in humans. Radiochemistry and preclinical studies in rats and pigs including development of a tracer kinetic model to determine VT. A method for the measurement of percent intact tracer in plasma was developed and the radiation dosimetry was determined in rats. RESULTS: 3-5GBq of [(11)C]UCB-A could be produced with radiochemical purity exceeding 98% with a specific radioactivity of around 65GBq/µmol. In vitro binding showed high selective binding towards SV2A. [(11)C]UCB-A displayed a dose-dependent and reversible binding to SV2A as measured with PET in rats and pigs and the VT could be determined by Logan analysis. The dosimetry was favorable and low enough to allow multiple administrations of [(11)C]UCB-A to healthy volunteers, and the metabolite analysis showed no sign of labeled metabolites in brain. CONCLUSIONS: We have developed the novel PET tracer, [(11)C]UCB-A, that can be used to measure SV2A expression in vivo. The dosimetry allows up to 5 administrations of 400MBq of [(11)C]UCB-A in humans. Apart from measuring drug occupancy, as we have shown, the tracer can potentially be used to compare SV2A expression between individuals because of the rather narrow range of baseline VT values. This will have to be further validated in human studies.


Assuntos
Radioisótopos de Carbono , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Piracetam/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Levetiracetam , Masculino , Piracetam/química , Piracetam/metabolismo , Piracetam/farmacocinética , Ratos , Suínos , Distribuição Tecidual
4.
J Nucl Med ; 55(8): 1336-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24935992

RESUMO

UNLABELLED: Synaptic vesicle protein 2 isoforms are critical for proper nervous system function and are involved in vesicle trafficking. The synaptic vesicle protein 2A (SV2A) isoform has been identified as the binding site of the antiepileptic levetiracetam (LEV), making it an interesting therapeutic target for epilepsy. (18)F-UCB-H is a novel PET imaging agent with a nanomolar affinity for human SV2A. METHODS: Preclinical PET studies were performed with isoflurane-anesthetized rats. The arterial input function was measured with an arteriovenous shunt and a ß-microprobe system. (18)F-UCB-H was injected intravenously (bolus of 140 ± 20 MBq). RESULTS: Brain uptake of (18)F-UCB-H was high, matching the expected homogeneous distribution of SV2A. The distribution volume (Vt) for (18)F-UCB-H was calculated with Logan graphic analysis, and the effect of LEV pretreatment on Vt was measured. In control animals the whole-brain Vt was 9.76 ± 0.52 mL/cm(3) (mean ± SD; n = 4; test-retest), and the reproducibility in test-retest studies was 10.4% ± 6.5% (mean ± SD). The uptake of (18)F-UCB-H was dose dependently blocked by pretreatment with LEV (0.1-100 mg/kg intravenously). CONCLUSION: Our results indicated that (18)F-UCB-H is a suitable radiotracer for the imaging of SV2A in vivo. To our knowledge, this is the first PET tracer for the in vivo quantification of SV2A. The necessary steps for the implementation of (18)F-UCB-H production under good manufacturing practice conditions and the first human studies are being planned.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Tomografia por Emissão de Pósitrons , Piridinas , Pirrolidinonas , Animais , Humanos , Masculino , Traçadores Radioativos , Ratos
5.
EJNMMI Res ; 3(1): 35, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23647774

RESUMO

BACKGROUND: [18F]UCB-H was developed as a novel radiotracer with a high affinity for synaptic vesicle protein 2A, the binding site for the antiepileptic levetiracetam. The objectives of this study were to evaluate the radiation dosimetry of [18F]UCB-H in a preclinical trial and to determine the maximum injectable dose according to guidelines for human biomedical research. The radiation dosimetry was derived by organ harvesting and dynamic micro positron emission tomography (PET) imaging in mice, and the results of both methods were compared. METHODS: Twenty-four male C57BL-6 mice were injected with 6.96 ± 0.81 MBq of [18F]UCB-H, and the biodistribution was determined by organ harvesting at 2, 5, 10, 30, 60, and 120 min (n = 4 for each time point). Dynamic microPET imaging was performed on five male C57BL-6 mice after the injection of 9.19 ± 3.40 MBq of [18F]UCB-H. A theoretical dynamic bladder model was applied to simulate urinary excretion. Human radiation dose estimates were derived from animal data using the International Commission on Radiological Protection 103 tissue weighting factors. RESULTS: Based on organ harvesting, the urinary bladder wall, liver and brain received the highest radiation dose with a resulting effective dose of 1.88E-02 mSv/MBq. Based on dynamic imaging an effective dose of 1.86E-02 mSv/MBq was calculated, with the urinary bladder wall and liver (brain was not in the imaging field of view) receiving the highest radiation. CONCLUSIONS: This first preclinical dosimetry study of [18F]UCB-H showed that the tracer meets the standard criteria for radiation exposure in clinical studies. The dose-limiting organ based on US Food and Drug Administration (FDA) and European guidelines was the urinary bladder wall for FDA and the effective dose for Europe with a maximum injectable single dose of approximately 325 MBq was calculated. Although microPET imaging showed significant deviations from organ harvesting, the Pearson's correlation coefficient between radiation dosimetry derived by either method was 0.9666.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...