Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(24)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34108209

RESUMO

The performance of functional materials is either driven or limited by nanoscopic heterogeneities distributed throughout the material's volume. To better our understanding of these materials, we need characterization tools that allow us to determine the nature and distribution of these heterogeneities in their native geometry in 3D. Here, we introduce a method based on x-ray near-edge spectroscopy, ptychographic x-ray computed nanotomography, and sparsity techniques. The method allows the acquisition of quantitative multimodal tomograms of representative sample volumes at sub-30 nm half-period spatial resolution within practical acquisition times, which enables local structure refinements in complex geometries. To demonstrate the method's capabilities, we investigated the transformation of vanadium phosphorus oxide catalysts with industrial use. We observe changes from the micrometer to the atomic level and the formation of a location-specific defect so far only theorized. These results led to a reevaluation of these catalysts used in the production of plastics.

2.
Nat Commun ; 10(1): 4012, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488821

RESUMO

Ethane oxidative dehydrogenation (ODH) is an alternative route for ethene production. Crystalline M1 phase of Mo-V mixed metal oxide is an excellent catalyst for this reaction. Here we show a hydrothermal synthesis method that generates M1 phases with high surface areas starting from poorly soluble metal oxides. Use of organic additives allows control of the concentration of metals in aqueous suspension. Reactions leading to crystalline M1 take place at 190 °C, i.e., approximately 400 °C lower than under current synthesis conditions. The evolution of solvated polyoxometalate ions and crystalline phases in the solid is monitored by spectroscopies. Catalysts prepared by this route show higher ODH activity compared to conventionally prepared catalysts. The higher activity is due not only to the high specific surface area but also to the corrugated lateral termination of the M1 crystals, as seen by atomic resolution electron microscopy, exposing a high concentration of catalytically active sites.

3.
Comb Chem High Throughput Screen ; 15(2): 136-9, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21902644

RESUMO

The oxidation of o-xylene and/or naphthalene to phthalic anhydride is one of the important industrial processes based on catalytic selective oxidation reactions. Vanadia--titania catalysts have been used in the industrial phthalic anyhdride process for the last 50 years. The operation parameters like the temperature range of operation, reactor inlet pressures, contact times, o-xylene loadings, etc. were constantly improved during this period of continuous process optimization so as to optimize catalyst performance and increase its life time. However, a fundamental understanding of the mutual interaction of the rather complex reaction network and the catalyst formulation is still missing. Recently, a detailed study of by-product formation as function of process conditions allowed us to develop a novel, improved reaction scheme for the catalytic oxidation of o-xylene. Based on this understanding, a detailed investigation was conducted for the first time of the by-product formation under varying operation conditions and as a function of the active mass variation exploiting high-throughput, as well as bench scales reactors. This high-throughput testing allowed us to relate reaction kinetics to novel catalyst formulations.


Assuntos
Anidridos Ftálicos/síntese química , Titânio/química , Vanádio/química , Xilenos/química , Catálise , Ensaios de Triagem em Larga Escala , Naftalenos/química , Oxirredução , Anidridos Ftálicos/química , Temperatura
4.
Comb Chem High Throughput Screen ; 15(2): 114-22, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21902646

RESUMO

The Temkin reactor concept was successfully extended to the high throughput operation mode and it could be considerably improved as compared to the original design with respect to an optimized gas flow pattern over the full size beads. This improved parallel reactor design was successfully used for the high throughput optimization of an innovative new class of physically coated VAM shell catalysts. Exploiting this novel, improved Temkin reactor concept allowed Süd-Chemie not only to optimize the multiparameter compositional space of noble metal and promoter loadings on the support spheres but for the first time to combine this "chemical optimization" with the high throughput improvement of catalytically decisive parameters as the active shell thickness, the metal distribution cross the shell, the pore diameters, and the pore volumes. This new class of physically impregnated VA catalysts, called VAM²ax, impress by its exceptionally high VA selectivity of above 94% at 50% oxygen conversion and the very high space time yields of > 1000 g VAM/l*h which easily can be reached over these shell catalysts with optimized mass and heat transport properties.


Assuntos
Ensaios de Triagem em Larga Escala , Catálise , Oxirredução , Compostos de Vinila/síntese química , Compostos de Vinila/química
7.
Angew Chem Int Ed Engl ; 40(11): 2066-2068, 2001 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29712216

RESUMO

Special carbon! Carbon nanofilaments differ from graphite and soot catalysts in their high stability during the oxidative dehydrogenation of ethylbenzene to styrene. The high yields of styrene achieved suggest that a first industrial application of carbon nanofilaments in catalysis is possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...