Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 655: 75-81, 2023 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-36933310

RESUMO

Within the field of combinatorial protein engineering there is a great demand for robust high-throughput selection platforms that allow for unbiased protein library display, affinity-based screening, and amplification of selected clones. We have previously described the development of a staphylococcal display system used for displaying both alternative-scaffolds and antibody-derived proteins. In this study, the objective was to generate an improved expression vector for displaying and screening a high-complexity naïve affibody library, and to facilitate downstream validation of isolated clones. A high-affinity normalization tag, consisting of two ABD-moieties, was introduced to simplify off-rate screening procedures. In addition, the vector was furnished with a TEV protease substrate recognition sequence upstream of the protein library which enables proteolytic processing of the displayed construct for improved binding signal. In the library design, 13 of the 58 surface-exposed amino acid positions were selected for full randomization (except proline and cysteine) using trinucleotide technology. The genetic library was successfully transformed to Staphylococcus carnosus cells, generating a protein library exceeding 109 members. De novo selections against three target proteins (CD14, MAPK9 and the affibody ZEGFR:2377) were successfully performed using magnetic bead-based capture followed by flow-cytometric sorting, yielding affibody molecules binding their respective target with nanomolar affinity. Taken together, the results demonstrate the feasibility of the staphylococcal display system and the proposed selection procedure to generate new affibody molecules with high affinity.


Assuntos
Biblioteca de Peptídeos , Engenharia de Proteínas , Citometria de Fluxo/métodos , Engenharia de Proteínas/métodos , Ligação Proteica
2.
J Control Release ; 357: 185-195, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990160

RESUMO

Safety and efficacy of cancer-targeting treatments can be improved by conditional activation enabled by the distinct milieu of the tumour microenvironment. Proteases are intricately involved in tumourigenesis and commonly dysregulated with elevated expression and activity. Design of prodrug molecules with protease-dependent activation has the potential to increase tumour-selective targeting while decreasing exposure to healthy tissues, thus improving the safety profile for patients. Higher selectivity could also allow for administration of higher doses or use of more aggressive treatment options, leading to higher therapeutic efficacy. We have previously developed an affibody-based prodrug with conditional targeting of EGFR conferred by an anti-idiotypic affibody masking domain (ZB05). We could show that binding to endogenous EGFR on cancer cells in vitro was restored following proteolytic removal of ZB05. In this study we evaluate a novel affibody-based prodrug design, which incorporates a protease substrate sequence recognized by cancer-associated proteases and demonstrate the potential of this approach for selective tumour-targeting and shielded uptake in healthy tissues in vivo using tumour-bearing mice. This may widen the therapeutic index of cytotoxic EGFR-targeted therapeutics by decreasing side effects, improving selectivity of drug delivery, and enabling the use of more potent cytotoxic drugs.


Assuntos
Neoplasias , Pró-Fármacos , Animais , Camundongos , Pró-Fármacos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
3.
N Biotechnol ; 73: 9-18, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36526248

RESUMO

Conditional activation of engineered affinity proteins by proteolytic processing is an interesting approach for a wide range of applications. We have generated an anti-idiotypic masking domain with specificity for the binding surface of an EGFR-targeting affibody molecule using an in-house developed staphylococcal display method. The masking domain could specifically abrogate EGFR-binding on cancer cells when fused to the EGFR-targeting affibody molecule via a linker comprising a protease cleavage site. EGFR-binding was restored by proteolytic cleavage of the linker region resulting in release of the masking domain. A saturation mutagenesis study provided detailed information on the interaction between the EGFR-targeting affibody molecule and the masking domain. Introducing an anti-idiotypic masking affibody domain is a viable approach for blocking EGFR-binding and allows for conditional activation by proteolytic processing. The results warrant further studies evaluating the therapeutic and diagnostic applicability both in vitro and in vivo.


Assuntos
Receptores ErbB , Peptídeo Hidrolases , Receptores ErbB/metabolismo
4.
Front Microbiol ; 10: 1511, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396164

RESUMO

Proteins that contain disulfide bonds mainly mature in the oxidative environment of the eukaryotic endoplasmic reticulum or the periplasm of Gram-negative bacteria. In E. coli, disulfide bond containing recombinant proteins are often targeted to the periplasm by an N-terminal signal peptide that is removed once it passes through the Sec-translocon in the cytoplasmic membrane. Despite their conserved targeting function, signal peptides can impact recombinant protein production yields in the periplasm, as can the production rate. Here, we present a combined screen involving different signal peptides and varying production rates that enabled the identification of more optimal conditions for periplasmic production of recombinant proteins with disulfide bonds. The data was generated from two targets, a single chain antibody fragment (BL1) and human growth hormone (hGH), with four different signal peptides and a titratable rhamnose promoter-based system that enables the tuning of protein production rates. Across the screen conditions, the yields for both targets significantly varied, and the optimal signal peptide and rhamnose concentration differed for each protein. Under the optimal conditions, the periplasmic BL1 and hGH were properly folded and active. Our study underpins the importance of combinatorial screening approaches for addressing the requirements associated with the production of a recombinant protein in the periplasm.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32064253

RESUMO

Recently, we engineered a tunable rhamnose promoter-based setup for the production of recombinant proteins in E. coli. This setup enabled us to show that being able to precisely set the production rate of a secretory recombinant protein is critical to enhance protein production yields in the periplasm. It is assumed that precisely setting the production rate of a secretory recombinant protein is required to harmonize its production rate with the protein translocation capacity of the cell. Here, using proteome analysis we show that enhancing periplasmic production of human Growth Hormone (hGH) using the tunable rhamnose promoter-based setup is accompanied by increased accumulation levels of at least three key players in protein translocation; the peripheral motor of the Sec-translocon (SecA), leader peptidase (LepB), and the cytoplasmic membrane protein integrase/chaperone (YidC). Thus, enhancing periplasmic hGH production leads to increased Sec-translocon capacity, increased capacity to cleave signal peptides from secretory proteins and an increased capacity of an alternative membrane protein biogenesis pathway, which frees up Sec-translocon capacity for protein secretion. When cells with enhanced periplasmic hGH production yields were harvested and subsequently cultured in the absence of inducer, SecA, LepB, and YidC levels went down again. This indicates that when using the tunable rhamnose-promoter system to enhance the production of a protein in the periplasm, E. coli can adapt its protein translocation machinery for enhanced recombinant protein production in the periplasm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...