Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576165

RESUMO

Introduction: Previously, we demonstrated the degeneration of axon terminals in mice after repeated injections of blood sera from amyotrophic lateral sclerosis (ALS) patients with identified mutations. However, whether a similar treatment affects the cell body of motor neurons (MNs) remained unresolved. Methods: Sera from healthy individuals or ALS patients with a mutation in different ALS-related genes were intraperitoneally injected into ten-week-old male Balb/c mice (n = 3/serum) for two days. Afterward, the perikaryal calcium level was measured using electron microscopy. Furthermore, the optical disector method was used to evaluate the number of lumbar MNs. Results: The cytoplasmic calcium level of the lumbar MNs of the ALS-serum-treated mice, compared to untreated and healthy-serum-treated controls, was significantly elevated. While injections of the healthy serum did not reduce the number of MNs compared to the untreated control group, ALS sera induced a remarkable loss of MNs. Discussion: Similarly to the distant motor axon terminals, the injection of blood sera of ALS patients has a rapid degenerative effect on MNs. Analogously, the magnitude of the evoked changes was specific to the type of mutation; furthermore, the degeneration was most pronounced in the group treated with sera from ALS patients with a mutation in the chromosome 9 open reading frame 72 gene.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Neurônios Motores/metabolismo , Esclerose Lateral Amiotrófica/sangue , Animais , Modelos Animais de Doenças , Imunoglobulinas/genética , Imunoglobulinas/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação/genética
2.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756522

RESUMO

Previously, we demonstrated increased calcium levels and synaptic vesicle densities in the motor axon terminals (MATs) of sporadic amyotrophic lateral sclerosis (ALS) patients. Such alterations could be conferred to mice with an intraperitoneal injection of sera from these patients or with purified immunoglobulin G. Later, we confirmed the presence of similar alterations in the superoxide dismutase 1 G93A transgenic mouse strain model of familial ALS. These consistent observations suggested that calcium plays a central role in the pathomechanism of ALS. This may be further reinforced by completing a similar analytical study of the MATs of ALS patients with identified mutations. However, due to the low yield of muscle biopsy samples containing MATs, and the low incidence of ALS patients with the identified mutations, these examinations are not technically feasible. Alternatively, a passive transfer of sera from ALS patients with known mutations was used, and the MATs of the inoculated mice were tested for alterations in their calcium homeostasis and synaptic activity. Patients with 11 different ALS-related mutations participated in the study. Intraperitoneal injection of sera from these patients on two consecutive days resulted in elevated intracellular calcium levels and increased vesicle densities in the MATs of mice, which is comparable to the effect of the passive transfer from sporadic patients. Our results support the idea that the pathomechanism underlying the identical manifestation of the disease with or without identified mutations is based on a common final pathway, in which increasing calcium levels play a central role.


Assuntos
Esclerose Lateral Amiotrófica/genética , Axônios/metabolismo , Neurônios Motores/metabolismo , Superóxido Dismutase/genética , Vesículas Sinápticas/genética , Esclerose Lateral Amiotrófica/sangue , Esclerose Lateral Amiotrófica/patologia , Animais , Axônios/patologia , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos/genética , Camundongos Transgênicos/metabolismo , Neurônios Motores/patologia , Mutação/genética , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Vesículas Sinápticas/patologia
3.
Brain Res ; 1741: 146875, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32389588

RESUMO

Diazoxide (DZX), an anti-hypertonic and anti-hypoglycemic drug, was shown to have anti-inflammatory effects in several injured cell types outside the central nervous system. In the brain, the neuroprotective potential of DZX is well described, however, its anticipated anti-inflammatory effect after acute injury has not been systematically analyzed. To disclose the anti-inflammatory effect of DZX in the central nervous system, an injury was induced in the hypoglossal and facial nuclei and in the oculomotor nucleus by unilateral axonal transection and unilateral target deprivation (enucleation), respectively. On the fourth day after surgery, microglial analysis was performed on tissue in which microglia were DAB-labeled and motoneurons were labeled with immunofluorescence. DZX treatment was given either prophylactically, starting 7 days prior to the injury and continuing until the animals were sacrificed, or postoperatively only, with daily intraperitoneal injections (1.25 mg/kg; in 10 mg/ml dimethyl sulfoxide in distilled water). Prophylactically + postoperatively applied DZX completely eliminated the microglial reaction in each motor nuclei. If DZX was applied only postoperatively, some microglial activation could be detected, but its magnitude was still significantly smaller than the non-DZX-treated controls. The effect of DZX could also be demonstrated through an extended period, as tested in the hypoglossal nucleus on day 7 after the operation. Neuronal counts, determined at day 4 after the operation in the hypoglossal nucleus, demonstrated no loss of motor neurons, however, an increased Feret's diameter of mitochondria could be measured, suggesting increased oxidative stress in the injured cells. The increase of mitochondrial Feret's diameter could also be prevented with DZX treatment.


Assuntos
Tronco Encefálico/efeitos dos fármacos , Diazóxido/administração & dosagem , Gliose/tratamento farmacológico , Microglia/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/ultraestrutura , Esquema de Medicação , Núcleo do Nervo Facial/efeitos dos fármacos , Núcleo do Nervo Facial/metabolismo , Núcleo do Nervo Facial/ultraestrutura , Gliose/metabolismo , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microglia/metabolismo , Microglia/ultraestrutura , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Complexo Nuclear Oculomotor/efeitos dos fármacos , Complexo Nuclear Oculomotor/metabolismo , Complexo Nuclear Oculomotor/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
4.
Int J Mol Sci ; 20(10)2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31130623

RESUMO

In an earlier study, signs of commencing degeneration of spinal motor neurons were induced in mice with short-term intraperitoneal injections of immunoglobulin G (IgG) taken from patients with amyotrophic lateral sclerosis (ALS). Since in that study, neither weakness nor loss of motor neurons was noted, to test whether the ALS IgG in this paradigm has the potential to evoke relentless degeneration of motor neurons, treatment with repeated injections over a longer period was carried out. Mice were systematically injected intraperitoneally with serum taken from ALS patients over a 75-day period. At selected time points, the isometric force of the limbs, number of spinal motor neurons and their intracellular calcium levels were determined. Furthermore, markers of glial activation and the motoneuronal uptake of human IgG were monitored. During this period, gliosis and progressive motoneuronal degeneration developed, which led to gradual loss of spinal motor neurons, more than 40% at day 21, along with decreasing muscle strength in the limbs. The inclusion-like accumulation of IgG appeared in the perikarya with the increase of intracellular calcium in the cell bodies and motor nerve terminals. Our results demonstrate that ALS serum can transfer motor neuron disease to mice.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Doença dos Neurônios Motores/metabolismo , Neurônios Motores/patologia , Soro/metabolismo , Esclerose Lateral Amiotrófica/sangue , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Imunoglobulina G/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Doença dos Neurônios Motores/patologia , Neurônios Motores/metabolismo
5.
Ideggyogy Sz ; 70(7-8): 247-257, 2017 Jul 30.
Artigo em Húngaro | MEDLINE | ID: mdl-29870639

RESUMO

Amyotrophic lateral sclerosis (ALS), the most frequent motor neuron disease is characterized by progressive muscle weakness caused by the degeneration of the motor neurons in the spinal cord and motor cortex. However, according to the recent observations, ALS is a rather complex syndrome which frequently involves symptoms of cognitive impairment. Therefore, ALS cases can be interpreted in a clinico-pathological spectrum spanning from the classical ALS involving only the motor system to the fronto-temporal dementia. The progression of the disease, however, manifested in the degeneration of the upper and lower motor neurons, is based on the same complex pathobiology. The main elements of the pathomechanism, such as oxidative stress, excitotoxicity, immune/inflammatory processes and mitochondrial dysfunction are well described already, which operate in orchestrated way and amplify the deleterious effect of each other. It is assumed that calcium ions act as a catalyst in this interaction, hence each of the individual mechanisms has strong, positive and reciprocal calcium dependence thus may combine the individual pathological processes into a unified escalating mechanism of neuronal destruction. This review provides an overview of the role of calcium in connecting and amplifying the major mechanisms which lead to degeneration of the motor neurons in ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Cálcio/metabolismo , Humanos , Íons/metabolismo , Neurônios Motores/metabolismo , Degeneração Neural/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...