Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Faraday Discuss ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764361

RESUMO

The controlled activation of methane has drawn significant attention throughout various disciplines over the last few decades. In gas-phase experiments, the use of model systems with reduced complexity compared to condensed-phase catalytic systems allows us to investigate the intrinsic reactivity of elementary reactions down to the atomic level. Methane is rather inert in chemical reactions, as the weakening or cleavage of a C-H bond is required to make use of methane as C1-building block. The simplest model system for transition-metal-based catalysts is a mono-atomic metal ion. Only a few atomic transition-metal cations activate methane at room temperature. One of the most efficient elements is tantalum, which forms a carbene and releases molecular hydrogen in the reaction with methane: Ta+ + CH4 → TaCH2+ + H2. The reaction takes place at room temperature due to efficient intersystem crossing from the quintet to the triplet surface, i.e., from the electronic ground state of the tantalum cation to the triplet ground state of the tantalum carbene. This multi-state reactivity is often seen for reactions involving transition-metal centres, but leads to their theoretical treatment being a challenge even today. Chemical reactions, or to be precise reactive collisions, are dynamic processes making their description even more of a challenge to experiment and theory alike. Experimental energy- and angle-differential cross sections allow us to probe the rearrangement of atoms during a reactive collision. By interpreting the scattering signatures, we gain insight into the atomistic mechanisms and can move beyond stationary descriptions. Here, we present a study combining collision energy dependent experimentally measured differential cross sections with ab initio calculations of the minimum energy pathway. Product ion velocity distributions were recorded using our crossed-beam velocity map imaging experiment dedicated to studying transition-metal ion molecule reactions. TaCH2+ velocity distributions reveal a significant degree of indirect dynamics. However, the scattering distributions also show signatures of rebound dynamics. We compare the present results to the oxygen transfer reaction between Ta+ and carbon dioxide, which we recently studied.

2.
Phys Chem Chem Phys ; 26(11): 8670-8680, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38437035

RESUMO

The reactions of Ta+ and Nb+ with CO2 proceed only by a highly efficient oxygen atom transfer reaction to the respective oxide at room temperature in the gas phase. Although the product spin states are not determined, thermochemistry dictates that they must be different from ground state quintet Ta+ and Nb+, implying that intersystem crossing (ISC) has occurred. Recent reactive scattering experiments found dominant indirect dynamics for the reaction with Ta+ hinting at a bottleneck along the reaction path. The question on the nature of the bottleneck, whether it involves a crossing point or a transition state, could not be finally answered because theory located both close to each other. Here, we aim at shedding further light onto the impact of intersystem crossing on the reaction dynamics and ultimately the reactivity of transition metal ion reactions in the gas phase. We employ a combination of thermal kinetics for Ta+ and Nb+ with CO2 using a selected-ion flow tube (SIFT) apparatus and differential scattering cross sections for Nb+ + CO2 from crossed-beam velocity map imaging. The reaction with niobium again shows dominant indirect dynamics and in general very similar dynamics compared to Ta+ + CO2. At thermal energies, both reactions show sub-collisional rate constants with small negative temperature dependencies. Experiments are complemented by high level quantum chemical calculations of the minimum energy pathway. Statistical modelling well-reproduces the experimental thermal rate constants, and suggests that the Nb+ reaction is rate-limited by the intersystem crossing at thermal energies.

3.
J Phys Chem Lett ; 14(24): 5524-5530, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37290113

RESUMO

The understanding of fundamental atomic-level processes often requires well-defined model systems. The oxygen atom transfer from CO2 to a transition metal cation in the gas phase presents such a model system. We investigate the reaction of Ta+ + CO2 for which the formation of TaO+ is highly efficient and attributed to multistate reactivity. Here, we study the atomistic dynamics of the oxygen atom transfer reaction by recording experimental energy and angle differential cross sections by crossed beam velocity map imaging supported by ab initio quantum chemical calculations. Product ion velocity distributions are dominated by signatures for indirect dynamics, despite the reaction being highly exothermic. Product kinetic energy distributions show little dependence on additional collision energy even with only four atoms involved, which hints at dynamical trapping behind a submerged barrier.

4.
Phys Chem Chem Phys ; 24(25): 15208-15216, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35579075

RESUMO

Chromone offers two energetically almost equivalent docking sites for alcohol molecules, in which the hydroxyl group is hydrogen bonded to one of the free electron pairs of the carbonyl O atom. Here, the delicate balance between these two competing arrangements is studied by combining IR/R2PI and UV/IR/UV spectroscopy in a molecular beam supported by quantum-chemical calculations. Most interestingly, chromone undergoes an efficient intersystem crossing into the triplet manifold upon electronic excitation, so that the studies on aromatic molecule-solvent complexes are for the first time extended to such a cluster in a triplet state. As the lowest triplet state (T1) is of ground state character, powerful energy decomposition approaches such as symmetry-adapted perturbation theory (SAPT) and local energy decomposition using the domain-based local pair natural orbital coupled-cluster method (DLPNO-CCSD(T)/LED) are applied. From the theoretical analysis we infer for the T1 state a loss of planarity (puckering) of the 4-pyrone ring of the chromone unit, which considerably affects the interplay between different types of non-covalent interactions at the two possible binding sites.


Assuntos
Cromonas , Metanol , Eletrônica , Elétrons , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...