Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 21(1): 22, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475715

RESUMO

Plasma proteomics holds immense potential for clinical research and biomarker discovery, serving as a non-invasive "liquid biopsy" for tissue sampling. Mass spectrometry (MS)-based proteomics, thanks to improvement in speed and robustness, emerges as an ideal technology for exploring the plasma proteome for its unbiased and highly specific protein identification and quantification. Despite its potential, plasma proteomics is still a challenge due to the vast dynamic range of protein abundance, hindering the detection of less abundant proteins. Different approaches can help overcome this challenge. Conventional depletion methods face limitations in cost, throughput, accuracy, and off-target depletion. Nanoparticle-based enrichment shows promise in compressing dynamic range, but cost remains a constraint. Enrichment strategies for extracellular vesicles (EVs) can enhance plasma proteome coverage dramatically, but current methods are still too laborious for large series. Neat plasma remains popular for its cost-effectiveness, time efficiency, and low volume requirement. We used a test set of 33 plasma samples for all evaluations. Samples were digested using S-Trap and analyzed on Evosep One and nanoElute coupled to a timsTOF Pro using different elution gradients and ion mobility ranges. Data were mainly analyzed using library-free searches using DIA-NN. This study explores ways to improve proteome coverage in neat plasma both in MS data acquisition and MS data analysis. We demonstrate the value of sampling smaller hydrophilic peptides, increasing chromatographic separation, and using library-free searches. Additionally, we introduce the EV boost approach, that leverages on the extracellular vesicle fraction to enhance protein identification in neat plasma samples. Globally, our optimized analysis workflow allows the quantification of over 1000 proteins in neat plasma with a 24SPD throughput. We believe that these considerations can be of help independently of the LC-MS platform used.

2.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37628837

RESUMO

The Protein Phosphatase type 1 catalytic subunit (PP1c) (PF3D7_1414400) operates in combination with various regulatory proteins to specifically direct and control its phosphatase activity. However, there is little information about this phosphatase and its regulators in the human malaria parasite, Plasmodium falciparum. To address this knowledge gap, we conducted a comprehensive investigation into the structural and functional characteristics of a conserved Plasmodium-specific regulator called Gametocyte EXported Protein 15, GEXP15 (PF3D7_1031600). Through in silico analysis, we identified three significant regions of interest in GEXP15: an N-terminal region housing a PP1-interacting RVxF motif, a conserved domain whose function is unknown, and a GYF-like domain that potentially facilitates specific protein-protein interactions. To further elucidate the role of GEXP15, we conducted in vitro interaction studies that demonstrated a direct interaction between GEXP15 and PP1 via the RVxF-binding motif. This interaction was found to enhance the phosphatase activity of PP1. Additionally, utilizing a transgenic GEXP15-tagged line and live microscopy, we observed high expression of GEXP15 in late asexual stages of the parasite, with localization predominantly in the nucleus. Immunoprecipitation assays followed by mass spectrometry analyses revealed the interaction of GEXP15 with ribosomal- and RNA-binding proteins. Furthermore, through pull-down analyses of recombinant functional domains of His-tagged GEXP15, we confirmed its binding to the ribosomal complex via the GYF domain. Collectively, our study sheds light on the PfGEXP15-PP1-ribosome interaction, which plays a crucial role in protein translation. These findings suggest that PfGEXP15 could serve as a potential target for the development of malaria drugs.


Assuntos
Bioensaio , Plasmodium falciparum , Humanos , Animais , Plasmodium falciparum/genética , Proteína Fosfatase 1/genética , Animais Geneticamente Modificados , Domínio Catalítico
3.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499490

RESUMO

Accumulation of senescent dermal fibroblasts drives skin aging. The reactivation of proliferation is one strategy to modulate cell senescence. Recently, we reported the exact chemical composition of the hydrophilic extract of Oenothera biennis cell cultures (ObHEx) and we showed its skin anti-aging properties. The aim of this work is to assess its biological effect specifically on cell senescence. ObHEx action has been evaluated on normal human dermal fibroblasts subjected to stress-induced premature senescence (SIPS) through an ultra-deep proteomic analysis, leading to the most global senescence-associated proteome so far. Mass spectrometry data show that the treatment with ObHEx re-establishes levels of crucial mitotic proteins, strongly downregulated in senescent cells. To validate our proteomics findings, we proved that ObHEx can, in part, restore the activity of 'senescence-associated-ß-galactosidase', the most common hallmark of senescent cells. Furthermore, to assess if the upregulation of mitotic protein levels translates into a cell cycle re-entry, FACS experiments have been carried out, demonstrating a small but significative reactivation of senescent cell proliferation by ObHEx. In conclusion, the deep senescence-associated global proteome profiling published here provides a panel of hundreds of proteins deregulated by SIPS that can be used by the community to further understand senescence and the effect of new potential modulators. Moreover, proteomics analysis pointed to a specific promitotic effect of ObHEx on senescent cells. Thus, we suggest ObHEx as a powerful adjuvant against senescence associated with skin aging.


Assuntos
Oenothera biennis , Proteômica , Humanos , Fibroblastos/metabolismo , Senescência Celular , Pele , Células Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...