Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
medRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562723

RESUMO

Comprehending the mechanism behind human diseases with an established heritable component represents the forefront of personalized medicine. Nevertheless, numerous medically important genes are inaccurately represented in short-read sequencing data analysis due to their complexity and repetitiveness or the so-called 'dark regions' of the human genome. The advent of PacBio as a long-read platform has provided new insights, yet HiFi whole-genome sequencing (WGS) cost remains frequently prohibitive. We introduce a targeted sequencing and analysis framework, Twist Alliance Dark Genes Panel (TADGP), designed to offer phased variants across 389 medically important yet complex autosomal genes. We highlight TADGP accuracy across eleven control samples and compare it to WGS. This demonstrates that TADGP achieves variant calling accuracy comparable to HiFi-WGS data, but at a fraction of the cost. Thus, enabling scalability and broad applicability for studying rare diseases or complementing previously sequenced samples to gain insights into these complex genes. TADGP revealed several candidate variants across all cases and provided insight into LPA diversity when tested on samples from rare disease and cardiovascular disease cohorts. In both cohorts, we identified novel variants affecting individual disease-associated genes (e.g., IKZF1, KCNE1). Nevertheless, the annotation of the variants across these 389 medically important genes remains challenging due to their underrepresentation in ClinVar and gnomAD. Consequently, we also offer an annotation resource to enhance the evaluation and prioritization of these variants. Overall, we can demonstrate that TADGP offers a cost-efficient and scalable approach to routinely assess the dark regions of the human genome with clinical relevance.

2.
Nat Methods ; 21(6): 954-966, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689099

RESUMO

Long-read sequencing has recently transformed metagenomics, enhancing strain-level pathogen characterization, enabling accurate and complete metagenome-assembled genomes, and improving microbiome taxonomic classification and profiling. These advancements are not only due to improvements in sequencing accuracy, but also happening across rapidly changing analysis methods. In this Review, we explore long-read sequencing's profound impact on metagenomics, focusing on computational pipelines for genome assembly, taxonomic characterization and variant detection, to summarize recent advancements in the field and provide an overview of available analytical methods to fully leverage long reads. We provide insights into the advantages and disadvantages of long reads over short reads and their evolution from the early days of long-read sequencing to their recent impact on metagenomics and clinical diagnostics. We further point out remaining challenges for the field such as the integration of methylation signals in sub-strain analysis and the lack of benchmarks.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Metagenoma , Metagenômica , Microbiota , Metagenômica/métodos , Metagenoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Microbiota/genética , Humanos , Análise de Sequência de DNA/métodos , Biologia Computacional/métodos
3.
Virus Evol ; 10(1): vead086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361816

RESUMO

Respiratory syncytial virus (RSV) infection in immunocompromised individuals often leads to prolonged illness, progression to severe lower respiratory tract infection, and even death. How the host immune environment of the hematopoietic stem cell transplant (HCT) adults can affect viral genetic variation during an acute infection is not understood well. In the present study, we performed whole genome sequencing of RSV/A or RSV/B from samples collected longitudinally from HCT adults with normal (<14 days) and delayed (≥14 days) RSV clearance who were enrolled in a ribavirin trial. We determined the inter-host and intra-host genetic variation of RSV and the effect of mutations on putative glycosylation sites. The inter-host variation of RSV is centered in the attachment (G) and fusion (F) glycoprotein genes followed by polymerase (L) and matrix (M) genes. Interestingly, the overall genetic variation was constant between normal and delayed clearance groups for both RSV/A and RSV/B. Intra-host variation primarily occurred in the G gene followed by non-structural protein (NS1) and L genes; however, gain or loss of stop codons and frameshift mutations appeared only in the G gene and only in the delayed viral clearance group. Potential gain or loss of O-linked glycosylation sites in the G gene occurred both in RSV/A and RSV/B isolates. For RSV F gene, loss of N-linked glycosylation site occurred in three RSV/B isolates within an antigenic epitope. Both oral and aerosolized ribavirin did not cause any mutations in the L gene. In summary, prolonged viral shedding and immune deficiency resulted in RSV variation, especially in structural mutations in the G gene, possibly associated with immune evasion. Therefore, sequencing and monitoring of RSV isolates from immunocompromised patients are crucial as they can create escape mutants that can impact the effectiveness of upcoming vaccines and treatments.

4.
bioRxiv ; 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37398483

RESUMO

We describe the epidemiology and clinical characteristics of 29 patients with cancer and diarrhea in whom Enteroaggregative Escherichia coli (EAEC) was initially identified by GI BioFire panel multiplex. E. coli strains were successfully isolated from fecal cultures in 14 of 29 patients. Six of the 14 strains were identified as EAEC and 8 belonged to other diverse E. coli groups of unknown pathogenesis. We investigated these strains by their adherence to human intestinal organoids, cytotoxic responses, antibiotic resistance profile, full sequencing of their genomes, and annotation of their functional virulome. Interestingly, we discovered novel and enhanced adherence and aggregative patterns for several diarrheagenic pathotypes that were not previously seen when co-cultured with immortalized cell lines. EAEC isolates displayed exceptional adherence and aggregation to human colonoids compared not only to diverse GI E. coli , but also compared to prototype strains of other diarrheagenic E. coli . Some of the diverse E. coli strains that could not be classified as a conventional pathotype also showed an enhanced aggregative and cytotoxic response. Notably, we found a high carriage rate of antibiotic resistance genes in both EAEC strains and diverse GI E. coli isolates and observed a positive correlation between adherence to colonoids and the number of metal acquisition genes carried in both EAEC and the diverse E. coli strains. This work indicates that E. coli from cancer patients constitute strains of remarkable pathotypic and genomic divergence, including strains of unknown disease etiology with unique virulomes. Future studies will allow for the opportunity to re-define E. coli pathotypes with greater diagnostic accuracy and into more clinically relevant groupings.

5.
Res Sq ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333115

RESUMO

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples, while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time.

6.
bioRxiv ; 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37292999

RESUMO

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2. We could identify widespread transcriptional host responses to SARS-CoV-2 infection that were initially most strongly manifested in patients with extremely high initial viral loads, then attenuating within the patient over time as viral loads decreased. Genes correlated with SARS-CoV-2 viral load over time were similarly differentially expressed across independent datasets of SARS-CoV-2 infected lung and upper airway cells, from both in vitro systems and patient samples. We also generated expression data on the human nose organoid model during SARS-CoV-2 infection. The human nose organoid-generated host transcriptional response captured many aspects of responses observed in the above patient samples, while suggesting the existence of distinct host responses to SARS-CoV-2 depending on the cellular context, involving both epithelial and cellular immune responses. Our findings provide a catalog of SARS-CoV-2 host response genes changing over time.

8.
Circ Genom Precis Med ; 16(2): e003532, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36960714

RESUMO

BACKGROUND: Risk for venous thromboembolism has a strong genetic component. Whole genome sequencing from the TOPMed program (Trans-Omics for Precision Medicine) allowed us to look for new associations, particularly rare variants missed by standard genome-wide association studies. METHODS: The 3793 cases and 7834 controls (11.6% of cases were individuals of African, Hispanic/Latino, or Asian ancestry) were analyzed using a single variant approach and an aggregate gene-based approach using our primary filter (included only loss-of-function and missense variants predicted to be deleterious) and our secondary filter (included all missense variants). RESULTS: Single variant analyses identified associations at 5 known loci. Aggregate gene-based analyses identified only PROC (odds ratio, 6.2 for carriers of rare variants; P=7.4×10-14) when using our primary filter. Employing our secondary variant filter led to a smaller effect size at PROC (odds ratio, 3.8; P=1.6×10-14), while excluding variants found only in rare isoforms led to a larger one (odds ratio, 7.5). Different filtering strategies improved the signal for 2 other known genes: PROS1 became significant (minimum P=1.8×10-6 with the secondary filter), while SERPINC1 did not (minimum P=4.4×10-5 with minor allele frequency <0.0005). Results were largely the same when restricting the analyses to include only unprovoked cases; however, one novel gene, MS4A1, became significant (P=4.4×10-7 using all missense variants with minor allele frequency <0.0005). CONCLUSIONS: Here, we have demonstrated the importance of using multiple variant filtering strategies, as we detected additional genes when filtering variants based on their predicted deleteriousness, frequency, and presence on the most expressed isoforms. Our primary analyses did not identify new candidate loci; thus larger follow-up studies are needed to replicate the novel MS4A1 locus and to identify additional rare variation associated with venous thromboembolism.


Assuntos
Estudo de Associação Genômica Ampla , Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Medicina de Precisão , Predisposição Genética para Doença , Frequência do Gene
9.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747810

RESUMO

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hemotologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.

10.
Res Sq ; 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36778386

RESUMO

Ever larger Structural Variant (SV) catalogs highlighting the diversity within and between populations help researchers better understand the links between SVs and disease. The identification of SVs from DNA sequence data is non-trivial and requires a balance between comprehensiveness and precision. Here we present a catalog of 355,667 SVs (59.34% novel) across autosomes and the X chromosome (50bp+) from 138,134 individuals in the diverse TOPMed consortium. We describe our methodologies for SV inference resulting in high variant quality and >90% allele concordance compared to long-read de-novo assemblies of well-characterized control samples. We demonstrate utility through significant associations between SVs and important various cardio-metabolic and hematologic traits. We have identified 690 SV hotspots and deserts and those that potentially impact the regulation of medically relevant genes. This catalog characterizes SVs across multiple populations and will serve as a valuable tool to understand the impact of SV on disease development and progression.

11.
Hum Mol Genet ; 32(6): 1048-1060, 2023 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444934

RESUMO

Diabetic kidney disease (DKD) is recognized as an important public health challenge. However, its genomic mechanisms are poorly understood. To identify rare variants for DKD, we conducted a whole-exome sequencing (WES) study leveraging large cohorts well-phenotyped for chronic kidney disease and diabetes. Our two-stage WES study included 4372 European and African ancestry participants from the Chronic Renal Insufficiency Cohort and Atherosclerosis Risk in Communities studies (stage 1) and 11 487 multi-ancestry Trans-Omics for Precision Medicine participants (stage 2). Generalized linear mixed models, which accounted for genetic relatedness and adjusted for age, sex and ancestry, were used to test associations between single variants and DKD. Gene-based aggregate rare variant analyses were conducted using an optimized sequence kernel association test implemented within our mixed model framework. We identified four novel exome-wide significant DKD-related loci through initiating diabetes. In single-variant analyses, participants carrying a rare, in-frame insertion in the DIS3L2 gene (rs141560952) exhibited a 193-fold increased odds [95% confidence interval (CI): 33.6, 1105] of DKD compared with noncarriers (P = 3.59 × 10-9). Likewise, each copy of a low-frequency KRT6B splice-site variant (rs425827) conferred a 5.31-fold higher odds (95% CI: 3.06, 9.21) of DKD (P = 2.72 × 10-9). Aggregate gene-based analyses further identified ERAP2 (P = 4.03 × 10-8) and NPEPPS (P = 1.51 × 10-7), which are both expressed in the kidney and implicated in renin-angiotensin-aldosterone system modulated immune response. In the largest WES study of DKD, we identified novel rare variant loci attaining exome-wide significance. These findings provide new insights into the molecular mechanisms underlying DKD.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Insuficiência Renal Crônica , Humanos , Aminopeptidases , Nefropatias Diabéticas/genética , Sequenciamento do Exoma , Rim , Insuficiência Renal Crônica/genética
12.
Nat Commun ; 13(1): 7592, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36481753

RESUMO

Genome-wide association studies have identified thousands of single nucleotide variants and small indels that contribute to variation in hematologic traits. While structural variants are known to cause rare blood or hematopoietic disorders, the genome-wide contribution of structural variants to quantitative blood cell trait variation is unknown. Here we utilized whole genome sequencing data in ancestrally diverse participants of the NHLBI Trans Omics for Precision Medicine program (N = 50,675) to detect structural variants associated with hematologic traits. Using single variant tests, we assessed the association of common and rare structural variants with red cell-, white cell-, and platelet-related quantitative traits and observed 21 independent signals (12 common and 9 rare) reaching genome-wide significance. The majority of these associations (N = 18) replicated in independent datasets. In genome-editing experiments, we provide evidence that a deletion associated with lower monocyte counts leads to disruption of an S1PR3 monocyte enhancer and decreased S1PR3 expression.


Assuntos
Células Sanguíneas , Estudo de Associação Genômica Ampla , Humanos , Sequenciamento Completo do Genoma
13.
Genome Biol ; 23(1): 271, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575487

RESUMO

The fundamental challenge of multi-sample structural variant (SV) analysis such as merging and benchmarking is identifying when two SVs are the same. Common approaches for comparing SVs were developed alongside technologies which produce ill-defined boundaries. As SV detection becomes more exact, algorithms to preserve this refined signal are needed. Here, we present Truvari-an SV comparison, annotation, and analysis toolkit-and demonstrate the effect of SV comparison choices by building population-level VCFs from 36 haplotype-resolved long-read assemblies. We observe over-merging from other SV merging approaches which cause up to a 2.2× inflation of allele frequency, relative to Truvari.


Assuntos
Algoritmos , Variação Estrutural do Genoma , Humanos , Frequência do Gene , Alelos , Benchmarking , Sequenciamento de Nucleotídeos em Larga Escala , Genoma Humano
14.
Circ Genom Precis Med ; 15(6): e003605, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36282588

RESUMO

BACKGROUND: Routine genome-wide screening for cardiovascular disease risk may inform clinical decision-making. However, little is known about whether clinicians and patients would find such testing useful or acceptable within the context of a genomics-enabled learning health system. METHODS: We conducted surveys with patients and their clinicians who were participating in the HeartCare Study, a precision cardiology care project that returned results from a next-generation sequencing panel of 158 genes associated with cardiovascular disease risk. Six weeks after return of results, we assessed patients' and clinicians' perceived utility and disutility of HeartCare, the effect of the test on clinical recommendations, and patients' attitudes toward integration of research and clinical care. RESULTS: Among 666 HeartCare patients with a result returned during the survey study period, 42.0% completed a full or partial survey. Patient-participants who completed a full survey (n=224) generally had positive perceptions of HeartCare independent of whether they received a positive or negative result. Most patient-participants considered genetic testing for cardiovascular disease risk to have more benefit than risk (88.3%) and agreed that it provided information that they wanted to know (81.2%), while most disagreed that the test caused them to feel confused (77.7%) or overwhelmed (78.0%). For 122 of their patients with positive results, clinicians (n=13) reported making changes in clinical care for 66.4% of patients, recommending changes in health behaviors for 36.9% of patients, and recommending to 33.6% of patients that their family members have clinical testing. CONCLUSIONS: Both patients and clinicians thought the HeartCare panel screen for cardiovascular disease risk provided information that was useful in terms of personal or health benefits to the patient and that informed clinical care without causing patients to be confused or overwhelmed. Further research is needed to assess perceptions of genome-wide screening among the US cardiology clinic population.


Assuntos
Cardiologia , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Inquéritos e Questionários , Família , Tomada de Decisão Clínica
15.
Hum Mol Genet ; 31(18): 3120-3132, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35552711

RESUMO

Plasma levels of fibrinogen, coagulation factors VII and VIII and von Willebrand factor (vWF) are four intermediate phenotypes that are heritable and have been associated with the risk of clinical thrombotic events. To identify rare and low-frequency variants associated with these hemostatic factors, we conducted whole-exome sequencing in 10 860 individuals of European ancestry (EA) and 3529 African Americans (AAs) from the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium and the National Heart, Lung and Blood Institute's Exome Sequencing Project. Gene-based tests demonstrated significant associations with rare variation (minor allele frequency < 5%) in fibrinogen gamma chain (FGG) (with fibrinogen, P = 9.1 × 10-13), coagulation factor VII (F7) (with factor VII, P = 1.3 × 10-72; seven novel variants) and VWF (with factor VIII and vWF; P = 3.2 × 10-14; one novel variant). These eight novel rare variant associations were independent of the known common variants at these loci and tended to have much larger effect sizes. In addition, one of the rare novel variants in F7 was significantly associated with an increased risk of venous thromboembolism in AAs (Ile200Ser; rs141219108; P = 4.2 × 10-5). After restricting gene-based analyses to only loss-of-function variants, a novel significant association was detected and replicated between factor VIII levels and a stop-gain mutation exclusive to AAs (rs3211938) in CD36 molecule (CD36). This variant has previously been linked to dyslipidemia but not with the levels of a hemostatic factor. These efforts represent the largest integration of whole-exome sequence data from two national projects to identify genetic variation associated with plasma hemostatic factors.


Assuntos
Fator VIII , Hemostáticos , Fator VII/genética , Fator VIII/genética , Fibrinogênio/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento do Exoma , Fator de von Willebrand/análise , Fator de von Willebrand/genética
16.
Am J Hum Genet ; 109(6): 1175-1181, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35504290

RESUMO

Current publicly available tools that allow rapid exploration of linkage disequilibrium (LD) between markers (e.g., HaploReg and LDlink) are based on whole-genome sequence (WGS) data from 2,504 individuals in the 1000 Genomes Project. Here, we present TOP-LD, an online tool to explore LD inferred with high-coverage (∼30×) WGS data from 15,578 individuals in the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. TOP-LD provides a significant upgrade compared to current LD tools, as the TOPMed WGS data provide a more comprehensive representation of genetic variation than the 1000 Genomes data, particularly for rare variants and in the specific populations that we analyzed. For example, TOP-LD encompasses LD information for 150.3, 62.2, and 36.7 million variants for European, African, and East Asian ancestral samples, respectively, offering 2.6- to 9.1-fold increase in variant coverage compared to HaploReg 4.0 or LDlink. In addition, TOP-LD includes tens of thousands of structural variants (SVs). We demonstrate the value of TOP-LD in fine-mapping at the GGT1 locus associated with gamma glutamyltransferase in the African ancestry participants in UK Biobank. Beyond fine-mapping, TOP-LD can facilitate a wide range of applications that are based on summary statistics and estimates of LD. TOP-LD is freely available online.


Assuntos
Estudo de Associação Genômica Ampla , Medicina de Precisão , Povo Asiático , Humanos , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento Completo do Genoma
17.
Am J Hum Genet ; 109(5): 857-870, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385699

RESUMO

While polygenic risk scores (PRSs) enable early identification of genetic risk for chronic obstructive pulmonary disease (COPD), predictive performance is limited when the discovery and target populations are not well matched. Hypothesizing that the biological mechanisms of disease are shared across ancestry groups, we introduce a PrediXcan-derived polygenic transcriptome risk score (PTRS) to improve cross-ethnic portability of risk prediction. We constructed the PTRS using summary statistics from application of PrediXcan on large-scale GWASs of lung function (forced expiratory volume in 1 s [FEV1] and its ratio to forced vital capacity [FEV1/FVC]) in the UK Biobank. We examined prediction performance and cross-ethnic portability of PTRS through smoking-stratified analyses both on 29,381 multi-ethnic participants from TOPMed population/family-based cohorts and on 11,771 multi-ethnic participants from TOPMed COPD-enriched studies. Analyses were carried out for two dichotomous COPD traits (moderate-to-severe and severe COPD) and two quantitative lung function traits (FEV1 and FEV1/FVC). While the proposed PTRS showed weaker associations with disease than PRS for European ancestry, the PTRS showed stronger association with COPD than PRS for African Americans (e.g., odds ratio [OR] = 1.24 [95% confidence interval [CI]: 1.08-1.43] for PTRS versus 1.10 [0.96-1.26] for PRS among heavy smokers with ≥ 40 pack-years of smoking) for moderate-to-severe COPD. Cross-ethnic portability of the PTRS was significantly higher than the PRS (paired t test p < 2.2 × 10-16 with portability gains ranging from 5% to 28%) for both dichotomous COPD traits and across all smoking strata. Our study demonstrates the value of PTRS for improved cross-ethnic portability compared to PRS in predicting COPD risk.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Transcriptoma , Humanos , Pulmão , National Heart, Lung, and Blood Institute (U.S.) , Doença Pulmonar Obstrutiva Crônica/genética , Fatores de Risco , Estados Unidos/epidemiologia
18.
Genome Med ; 14(1): 34, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35346344

RESUMO

BACKGROUND: The All of Us Research Program (AoURP, "the program") is an initiative, sponsored by the National Institutes of Health (NIH), that aims to enroll one million people (or more) across the USA. Through repeated engagement of participants, a research resource is being created to enable a variety of future observational and interventional studies. The program has also committed to genomic data generation and returning important health-related information to participants. METHODS: Whole-genome sequencing (WGS), variant calling processes, data interpretation, and return-of-results procedures had to be created and receive an Investigational Device Exemption (IDE) from the United States Food and Drug Administration (FDA). The performance of the entire workflow was assessed through the largest known cross-center, WGS-based, validation activity that was refined iteratively through interactions with the FDA over many months. RESULTS: The accuracy and precision of the WGS process as a device for the return of certain health-related genomic results was determined to be sufficient, and an IDE was granted. CONCLUSIONS: We present here both the process of navigating the IDE application process with the FDA and the results of the validation study as a guide to future projects which may need to follow a similar path. Changes to the program in the future will be covered in supplementary submissions to the IDE and will support additional variant classes, sample types, and any expansion to the reportable regions.


Assuntos
Farmacogenética , Saúde da População , Genômica , Humanos , Estados Unidos , Sequenciamento Completo do Genoma/métodos
19.
Gigascience ; 112022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35166336

RESUMO

BACKGROUND: Cryptosporidium parvum is an apicomplexan parasite commonly found across many host species with a global infection prevalence in human populations of 7.6%. Understanding its diversity and genomic makeup can help in fighting established infections and prohibiting further transmission. The basis of every genomic study is a high-quality reference genome that has continuity and completeness, thus enabling comprehensive comparative studies. FINDINGS: Here, we provide a highly accurate and complete reference genome of Cryptosporidium parvum. The assembly is based on Oxford Nanopore reads and was improved using Illumina reads for error correction. We also outline how to evaluate and choose from different assembly methods based on 2 main approaches that can be applied to other Cryptosporidium species. The assembly encompasses 8 chromosomes and includes 13 telomeres that were resolved. Overall, the assembly shows a high completion rate with 98.4% single-copy BUSCO genes. CONCLUSIONS: This high-quality reference genome of a zoonotic IIaA17G2R1 C. parvum subtype isolate provides the basis for subsequent comparative genomic studies across the Cryptosporidium clade. This will enable improved understanding of diversity, functional, and association studies.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Criptosporidiose/epidemiologia , Criptosporidiose/genética , Criptosporidiose/parasitologia , Cryptosporidium/genética , Cryptosporidium parvum/genética , Genoma , Genômica/métodos , Humanos
20.
Front Mol Biosci ; 9: 1095193, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699700

RESUMO

Infections by non-segmented negative-strand RNA viruses (NNSV) are widely thought to entail gradient gene expression from the well-established existence of a single promoter at the 3' end of the viral genome and the assumption of constant transcriptional attenuation between genes. But multiple recent studies show viral mRNA levels in infections by respiratory syncytial virus (RSV), a major human pathogen and member of NNSV, that are inconsistent with a simple gradient. Here we integrate known and newly predicted phenomena into a biophysically reasonable model of NNSV transcription. Our model succeeds in capturing published observations of respiratory syncytial virus and vesicular stomatitis virus (VSV) mRNA levels. We therefore propose a novel understanding of NNSV transcription based on the possibility of ejective polymerase-polymerase collisions and, in the case of RSV, biased polymerase diffusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...