Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Bioanalysis ; 4(11): 1351-61, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22720653

RESUMO

BACKGROUND: A semi-automated 96-well protein precipitation followed by HPLC-MS/MS method for the determination of atrasentan (2R-[4-methoxyphenyl]-4S-[1,3-benzodioxol-5-yl]-1-[N,N-di-(N-butyl)-aminocarbonyl-methyl]-pyrrolidine-3R-carboxylic acid) in mouse whole blood was developed, validated and utilized in GLP toxicokinetic evaluations. Six 40-µl whole blood samples were collected from a single mouse over the course of a 12 h blood collection window. To avoid sample volume losses, whole blood was selected as the matrix in place of the more typically used plasma. A 10-µl assay volume was used to ensure sufficient volumes are available for dilutions, repeats and incurred sample reanalysis. The samples (10-µl aliquot) were fortified with stable-labeled internal standard (d18-atrasentan) and lysed thoroughly prior to protein precipitation. The chromatographic separation was performed on a Zorbax(®) SB-C18 (50 x 2.1 mm; 5 µm) HPLC column with a mobile phase consisting of 25 mM ammonium acetate and 0.25% (v/v) acetic acid in 50/50 (v/v) acetonitrile/water. The MS measurement was conducted under positive ion mode using multiple-reaction monitoring of m/z 511→354 for analyte and 529→354 for stable-labeled internal standard. The peak area ratio (analyte:stable-labeled internal standard) was used to quantitate atrasentan. RESULTS: A dynamic range of 5-1400 ng/ml was established after validation. The challenges associated with a small-volume whole-blood assay involved anticoagulant overloading with commercial blood collection tubes, managing phospholipids to ensure a robust assay and automation. In-depth discussions are provided in this article. The validated method was then used for GLP toxicokinetic evaluations. To demonstrate the method reproducibility, approximately 10% of the incurred samples from the study were repeated in singlet. Excellent assay reproducibility was demonstrated where 100% of samples met incurred sample reanalysis acceptance criteria. CONCLUSION: Good quality exposure data were obtained from every serial sampled mouse in the study.


Assuntos
Pirrolidinas/sangue , Animais , Atrasentana , Cromatografia Líquida de Alta Pressão/normas , Masculino , Camundongos , Farmacocinética , Fosfolipídeos/química , Fosfolipídeos/isolamento & purificação , Pirrolidinas/normas , Controle de Qualidade , Padrões de Referência , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/normas
2.
Pharmaceutics ; 2(2): 159-170, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27721348

RESUMO

When compared with biological samples in other matrices (plasma, urine, etc.) that are typically seen in bioanalytical applications, whole blood samples present unique challenges in method development, because of the viscous nature of blood and complexity of its constituents. In this article, we have developed and validated a series of quantitative bioanalytical methods for the determination of a pharmaceutical compound, Compound A, and its phosphate metabolite from whole blood matrices using liquid chromatography tandem mass spectrometry. All methods employed a simple protein precipitation procedure that was automated in 96-well format. The methods were subjected to vigorous tests in precision, accuracy, matrix effect, reproducibility, and robustness. Monolithic chromatography was used to improve sample throughput in one of the methods. The results also demonstrated that proper sample preparation procedures, such as sample transfer and lysing of blood cells prior to the extraction, are key to reproducible results for pharmacokinetic parameter determination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...