Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(6)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38931348

RESUMO

The establishment of a compliant radiopharmacy facility within a university setting is crucial for supporting fundamental and preclinical studies, as well as for the production of high-quality radiopharmaceuticals for clinical testing in human protocols as part of Investigational New Drug (IND) applications that are reviewed and approved by the U.S. Food and Drug Administration (FDA). This manuscript details the design and construction of a 550 ft2 facility, which included a radiopharmacy and a radiochemistry laboratory, to support radiopharmaceutical development research and facilitate translational research projects. The facility was designed to meet FDA guidelines for the production of aseptic radiopharmaceuticals in accordance with current good manufacturing practice (cGMP). A modular hard-panel cleanroom was constructed to meet manufacturing classifications set by the International Organization of Standardization (ISO), complete with a gowning room and an anteroom. Two lead-shielded hot cells and two dual-mini hot cells, connected via underground trenches containing shielded conduits, were installed to optimize radioactive material transfer while minimizing personnel radiation exposure. Concrete blocks and lead bricks provided sufficient and cost-effective radiation shielding for the trenches. Air quality was controlled using pre-filters and high-efficiency particulate air (HEPA) filters to meet cleanroom ISO7 (Class 10,000) standards. A laminar-flow biosafety cabinet was installed in the cleanroom for preparation of sterile dose vials. Noteworthy was a laminar-flow insert in the hot cell that provided a shielded laminar-flow sterile environment meeting ISO5 (class 100) standards. The design included the constant control and monitoring of differential air pressures across the cleanroom, anteroom, gowning room, and controlled research space, as well as maintenance of temperature and humidity. The facility was equipped with state-of-the-art equipment for quality control and release testing of radiopharmaceuticals. Administrative controls and standard operating procedures (SOPs) were established to ensure compliance with manufacturing standards and regulatory requirements. Overall, the design and construction of this radiopharmacy facility exemplified a commitment to advancing fundamental, translational, and clinical applications of radiopharmaceutical research within an academic environment.

2.
Front Chem ; 11: 1322773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38333550

RESUMO

Introduction: Better treatments for ovarian cancer are needed to eliminate residual peritoneal disease after initial debulking surgery. The present study evaluated Trastuzumab to deliver Pb-214/Bi-214 for targeted alpha therapy (TAT) for HER2-positive ovarian cancer in mouse models of residual disease. This study is the first report of TAT using a novel Radon-222 generator to produce short-lived Lead-214 (Pb-214, t1/2 = 26.8 min) in equilibrium with its daughter Bismuth-214 (Bi-214, t1/2 = 19.7 min); referred to as Pb-214/Bi-214. In this study, Pb-214/Bi-214-TCMC-Trastuzumab was tested. Methods: Trastuzumab and control IgG antibody were conjugated with TCMC chelator and radiolabeled with Pb-214/Bi-214 to yield Pb-214/Bi-214-TCMC-Trastuzumab and Pb-214/Bi-214-TCMC-IgG1. The decay of Pb-214/Bi-214 yielded α-particles for TAT. SKOV3 and OVAR3 human ovarian cancer cell lines were tested for HER2 levels. The effects of Pb-214/Bi-214-TCMC-Trastuzumab and appropriate controls were compared using clonogenic assays and in mice bearing peritoneal SKOV3 or OVCAR3 tumors. Mice control groups included untreated, Pb-214/Bi-214-TCMC-IgG1, and Trastuzumab only. Results and discussion: SKOV3 cells had 590,000 ± 5,500 HER2 receptors/cell compared with OVCAR3 cells at 7,900 ± 770. In vitro clonogenic assays with SKOV3 cells showed significantly reduced colony formation after Pb-214/Bi-214-TCMC-Trastuzumab treatment compared with controls. Nude mice bearing luciferase-positive SKOV3 or OVCAR3 tumors were treated with Pb-214/Bi-214-TCMC-Trastuzumab or appropriate controls. Two 0.74 MBq doses of Pb-214/Bi-214-TCMC-Trastuzumab significantly suppressed the growth of SKOV3 tumors for 60 days, without toxicity, compared with three control groups (untreated, Pb-214/Bi-214-TCMC-IgG1, or Trastuzumab only). Mice-bearing OVCAR3 tumors had effective therapy without toxicity with two 0.74 MBq doses of Pb-214/Bi-214-TCMC-trastuzumab or Pb-214/Bi-214-TCMC-IgG1. Together, these data indicated that Pb-214/Bi-214 from a Rn-222 generator system was successfully applied for TAT. Pb-214/Bi-214-TCMC-Trastuzumab was effective to treat mouse xenograft models. Advantages of Pb-214/Bi-214 from the novel generator systems include high purity, short half-life for fractioned therapy, and hourly availability from the Rn-222 generator system. This platform technology can be applied for a variety of cancer treatment strategies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...