Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4615, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944682

RESUMO

Pathogens with persistent environmental stages can have devastating effects on wildlife communities. White-nose syndrome (WNS), caused by the fungus Pseudogymnoascus destructans, has caused widespread declines in bat populations of North America. In 2009, during the early stages of the WNS investigation and before molecular techniques had been developed to readily detect P. destructans in environmental samples, we initiated this study to assess whether P. destructans can persist in the hibernaculum environment in the absence of its conclusive bat host and cause infections in naive bats. We transferred little brown bats (Myotis lucifugus) from an unaffected winter colony in northwest Wisconsin to two P. destructans contaminated hibernacula in Vermont where native bats had been excluded. Infection with P. destructans was apparent on some bats within 8 weeks following the introduction of unexposed bats to these environments, and mortality from WNS was confirmed by histopathology at both sites 14 weeks following introduction. These results indicate that environmental exposure to P. destructans is sufficient to cause the infection and mortality associated with WNS in naive bats, which increases the probability of winter colony extirpation and complicates conservation efforts.


Assuntos
Ascomicetos , Quirópteros , Hibernação , Animais , Quirópteros/microbiologia , Animais Selvagens , Síndrome
2.
mSphere ; 3(4)2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158282

RESUMO

White-nose syndrome (WNS) is causing significant declines in populations of North American hibernating bats, and recent western and southern expansions of the disease have placed additional species at risk. Understanding differences in species susceptibility and identifying management actions to reduce mortality of bats from WNS are top research priorities. However, the use of wild-caught susceptible bats, such as Myotis lucifugus, as model species for WNS research is problematic and places additional pressure on remnant populations. We investigated the feasibility of using Tadarida brasiliensis, a highly abundant species of bat that tolerates captivity, as the basis for an experimental animal model for WNS. Using methods previously established to confirm the etiology of WNS in M. lucifugus, we experimentally infected 11 T. brasiliensis bats with Pseudogymnoascus destructans in the laboratory under conditions that induced hibernation. We detected P. destructans on all 11 experimentally infected bats, 7 of which exhibited localized proliferation of hyphae within the epidermis, dermis, and subcutaneous tissue, similar to invasive cutaneous ascomycosis observed in M. lucifugus bats with WNS. However, the distribution of lesions across wing membranes of T. brasiliensis bats was limited, and only one discrete "cupping erosion," diagnostic for WNS, was identified. Thus, the rarity of lesions definitive for WNS suggests that T. brasiliensis does not likely represent an appropriate model for studying the pathophysiology of this disease. Nonetheless, the results of this study prompt questions concerning the potential for free-ranging, migratory T. brasiliensis bats to become infected with P. destructans and move the fungal pathogen between roost sites used by species susceptible to WNS.IMPORTANCE White-nose syndrome (WNS) is a fungal disease that is causing severe declines of bat populations in North America. Identifying ways to reduce the impacts of this disease is a priority but is inhibited by the lack of an experimental animal model that does not require the use of wild-caught bat species already impacted by WNS. We tested whether Tadarida brasiliensis, one of the most abundant species of bats in the Americas, could serve as a suitable animal model for WNS research. While T. brasiliensis bats were susceptible to experimental infection with the fungus under conditions that induced hibernation, the species exhibited limited pathology diagnostic for WNS. These results indicate that T. brasiliensis is not likely a suitable experimental model for WNS research. However, the recovery of viable WNS-causing fungus from experimentally infected bats indicates a potential for this species to contribute to the spread of the pathogen where it coexists with other species of bats affected by WNS.


Assuntos
Ascomicetos/isolamento & purificação , Quirópteros/microbiologia , Dermatomicoses/veterinária , Nariz , Animais , Ascomicetos/patogenicidade , Dermatomicoses/patologia , Hibernação , Masculino , América do Norte , Especificidade da Espécie
3.
J Wildl Dis ; 51(1): 101-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25390762

RESUMO

Morbidity and mortality events caused by avian paramyxovirus-1 (APMV-1) in Double-crested Cormorant (DCCO; Phalacrocorax auritus) nesting colonies in the US and Canada have been sporadically documented in the literature. We describe APMV-1 associated outbreaks in DCCO in the US from the first reported occurrence in 1992 through 2012. The frequency of APMV-1 outbreaks has increased in the US over the last decade, but the majority of events have continued to occur in DCCO colonies in the Midwestern states. Although morbidity and mortality in conesting species has been frequently reported during DCCO APMV-1 outbreaks, our results suggest that isolation of APMV-1 is uncommon in species other than DCCO during APMV-1 outbreaks and that the cause of mortality in other species is associated with other pathogens. Populations of DCCO do not appear to have been significantly affected by this disease; however, because at least 65% of the APMV-1 outbreaks in DCCO in the US have involved APMV-1 strains classified as virulent to poultry (virulent Newcastle disease virus), its persistence and increased occurrence in DCCO warrants continued research and surveillance.


Assuntos
Aves/classificação , Surtos de Doenças/veterinária , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Animais , Doença de Newcastle/epidemiologia , Doença de Newcastle/mortalidade , Especificidade da Espécie , Fatores de Tempo , Estados Unidos/epidemiologia
4.
J Wildl Dis ; 51(1): 36-47, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25375940

RESUMO

Before the discovery of white-nose syndrome (WNS), a fungal disease caused by Pseudogymnoascus destructans, there were no reports of fungal skin infections in bats during hibernation. In 2011, bats with grossly visible fungal skin infections similar in appearance to WNS were reported from multiple sites in Wisconsin, US, a state outside the known range of P. destructans and WNS at that time. Tape impressions or swab samples were collected from affected areas of skin from bats with these fungal infections in 2012 and analyzed by microscopy, culture, or direct DNA amplification and sequencing of the fungal internal transcribed spacer region (ITS). A psychrophilic species of Trichophyton was isolated in culture, detected by direct DNA amplification and sequencing, and observed on tape impressions. Deoxyribonucleic acid indicative of the same fungus was also detected on three of five bat carcasses collected in 2011 and 2012 from Wisconsin, Indiana, and Texas, US. Superficial fungal skin infections caused by Trichophyton sp. were observed in histopathology for all three bats. Sequencing of the ITS of Trichophyton sp., along with its inability to grow at 25 C, indicated that it represented a previously unknown species, described herein as Trichophyton redellii sp. nov. Genetic diversity present within T. redellii suggests it is native to North America but that it had been overlooked before enhanced efforts to study fungi associated with bats in response to the emergence of WNS.


Assuntos
Quirópteros/microbiologia , Hibernação , Tinha/veterinária , Trichophyton/isolamento & purificação , Animais , Tinha/microbiologia , Tinha/patologia , Trichophyton/classificação
5.
BMC Physiol ; 14: 10, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25487871

RESUMO

BACKGROUND: The physiological effects of white-nose syndrome (WNS) in hibernating bats and ultimate causes of mortality from infection with Pseudogymnoascus (formerly Geomyces) destructans are not fully understood. Increased frequency of arousal from torpor described among hibernating bats with late-stage WNS is thought to accelerate depletion of fat reserves, but the physiological mechanisms that lead to these alterations in hibernation behavior have not been elucidated. We used the doubly labeled water (DLW) method and clinical chemistry to evaluate energy use, body composition changes, and blood chemistry perturbations in hibernating little brown bats (Myotis lucifugus) experimentally infected with P. destructans to better understand the physiological processes that underlie mortality from WNS. RESULTS: These data indicated that fat energy utilization, as demonstrated by changes in body composition, was two-fold higher for bats with WNS compared to negative controls. These differences were apparent in early stages of infection when torpor-arousal patterns were equivalent between infected and non-infected animals, suggesting that P. destructans has complex physiological impacts on its host prior to onset of clinical signs indicative of late-stage infections. Additionally, bats with mild to moderate skin lesions associated with early-stage WNS demonstrated a chronic respiratory acidosis characterized by significantly elevated dissolved carbon dioxide, acidemia, and elevated bicarbonate. Potassium concentrations were also significantly higher among infected bats, but sodium, chloride, and other hydration parameters were equivalent to controls. CONCLUSIONS: Integrating these novel findings on the physiological changes that occur in early-stage WNS with those previously documented in late-stage infections, we propose a multi-stage disease progression model that mechanistically describes the pathologic and physiologic effects underlying mortality of WNS in hibernating bats. This model identifies testable hypotheses for better understanding this disease, knowledge that will be critical for defining effective disease mitigation strategies aimed at reducing morbidity and mortality that results from WNS.


Assuntos
Quirópteros/fisiologia , Metabolismo Energético , Hibernação , Micoses/veterinária , Ruído/efeitos adversos , Estresse Fisiológico , Animais , Composição Corporal , Quirópteros/sangue , Quirópteros/microbiologia , Feminino , Humanos , Masculino , Micoses/microbiologia , Micoses/mortalidade
6.
J Wildl Dis ; 50(3): 524-36, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24779460

RESUMO

Monkeypox (MPX) is a re-emerging zoonotic disease that is endemic in Central and West Africa, where it can cause a smallpox-like disease in humans. Despite many epidemiologic and field investigations of MPX, no definitive reservoir species has been identified. Using recombinant viruses expressing the firefly luciferase (luc) gene, we previously demonstrated the suitability of in vivo bioluminescent imaging (BLI) to study the pathogenesis of MPX in animal models. Here, we evaluated BLI as a novel approach for tracking MPX virus infection in black-tailed prairie dogs (Cynomys ludovicianus). Prairie dogs were affected during a multistate outbreak of MPX in the US in 2003 and have since been used as an animal model of this disease. Our BLI results were compared with PCR and virus isolation from tissues collected postmortem. Virus was easily detected and quantified in skin and superficial tissues by BLI before and during clinical phases, as well as in subclinical secondary cases, but was not reliably detected in deep tissues such as the lung. Although there are limitations to viral detection in larger wild rodent species, BLI can enhance the use of prairie dogs as an animal model of MPX and can be used for the study of infection, disease progression, and transmission in potential wild rodent reservoirs.


Assuntos
Medições Luminescentes/veterinária , Monkeypox virus/fisiologia , Mpox/veterinária , Sciuridae , Animais , Feminino , Masculino , Mpox/virologia
7.
J Vet Diagn Invest ; 25(1): 162-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23293161

RESUMO

Epizootic mortality in several geese species, including cackling geese (Branta hutchinsii) and Canada geese (Branta canadensis), has been recognized in the Willamette Valley of Oregon for over a decade. Birds are generally found dead on a body of water or are occasionally observed displaying neurologic clinical signs such as an inability to raise or control the head prior to death. Investigation of these epizootic mortality events has revealed the etiology to be accidental poisoning with the rodenticide zinc phosphide (Zn(3)P(2)). Gross and histologic changes are restricted to acute pulmonary congestion and edema, sometimes accompanied by distension of the upper alimentary tract by fresh grass. Geese are unusually susceptible to this pesticide; when combined with an epidemiologic confluence of depredation of specific agricultural crops by rodents and seasonal avian migration pathways, epizootic toxicosis may occur. Diagnosis requires a high index of suspicion, appropriate sample collection and handling, plus specific test calibration for this toxicant. Interagency cooperation, education of farmers regarding pesticide use, and enforcement of regulations has been successful in greatly decreasing these mortality events since 2009.


Assuntos
Doenças das Aves/epidemiologia , Surtos de Doenças/veterinária , Gansos , Fosfinas/intoxicação , Rodenticidas/intoxicação , Compostos de Zinco/intoxicação , Animais , Doenças das Aves/induzido quimicamente , Doenças das Aves/mortalidade , Histocitoquímica , Oregon/epidemiologia , Testes de Toxicidade
8.
Virulence ; 3(7): 583-8, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23154286

RESUMO

White nose syndrome, caused by Geomyces destructans, has killed more than 5 million cave hibernating bats in eastern North America. During hibernation, the lack of inflammatory cell recruitment at the site of fungal infection and erosion is consistent with a temperature-induced inhibition of immune cell trafficking. This immune suppression allows G. destructans to colonize and erode the skin of wings, ears and muzzle of bat hosts unchecked. Yet, paradoxically, within weeks of emergence from hibernation an intense neutrophilic inflammatory response to G. destructans is generated, causing severe pathology that can contribute to death. We hypothesize that the sudden reversal of immune suppression in bats upon the return to euthermia leads to a form of immune reconstitution inflammatory syndrome (IRIS). IRIS was first described in HIV-infected humans with low helper T lymphocyte counts and bacterial or fungal opportunistic infections. IRIS is a paradoxical and rapid worsening of symptoms in immune compromised humans upon restoration of immunity in the face of an ongoing infectious process. In humans with HIV, the restoration of adaptive immunity following suppression of HIV replication with anti-retroviral therapy (ART) can trigger severe immune-mediated tissue damage that can result in death. We propose that the sudden restoration of immune responses in bats infected with G. destructans results in an IRIS-like dysregulated immune response that causes the post-emergent pathology.


Assuntos
Síndrome Inflamatória da Reconstituição Imune/veterinária , Micoses/veterinária , Nariz/patologia , Animais , Quirópteros , Síndrome Inflamatória da Reconstituição Imune/patologia , Micoses/patologia , América do Norte
9.
PLoS One ; 7(6): e38920, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745688

RESUMO

White-nose syndrome (WNS), an emerging infectious disease that has killed over 5.5 million hibernating bats, is named for the causative agent, a white fungus (Geomyces destructans (Gd)) that invades the skin of torpid bats. During hibernation, arousals to warm (euthermic) body temperatures are normal but deplete fat stores. Temperature-sensitive dataloggers were attached to the backs of 504 free-ranging little brown bats (Myotis lucifugus) in hibernacula located throughout the northeastern USA. Dataloggers were retrieved at the end of the hibernation season and complete profiles of skin temperature data were available from 83 bats, which were categorized as: (1) unaffected, (2) WNS-affected but alive at time of datalogger removal, or (3) WNS-affected but found dead at time of datalogger removal. Histological confirmation of WNS severity (as indexed by degree of fungal infection) as well as confirmation of presence/absence of DNA from Gd by PCR was determined for 26 animals. We demonstrated that WNS-affected bats aroused to euthermic body temperatures more frequently than unaffected bats, likely contributing to subsequent mortality. Within the subset of WNS-affected bats that were found dead at the time of datalogger removal, the number of arousal bouts since datalogger attachment significantly predicted date of death. Additionally, the severity of cutaneous Gd infection correlated with the number of arousal episodes from torpor during hibernation. Thus, increased frequency of arousal from torpor likely contributes to WNS-associated mortality, but the question of how Gd infection induces increased arousals remains unanswered.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/microbiologia , Quirópteros/fisiologia , Hibernação/fisiologia , Nariz/microbiologia , Animais , Feminino , Masculino , Pele/microbiologia
10.
Ecotoxicology ; 21(3): 832-46, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22227859

RESUMO

In the United States, new regulatory restrictions have been placed on the use of some second-generation anticoagulant rodenticides. This action may be offset by expanded use of first-generation compounds (e.g., diphacinone; DPN). Single-day acute oral exposure of adult Eastern screech-owls (Megascops asio) to DPN evoked overt signs of intoxication, coagulopathy, histopathological lesions (e.g., hemorrhage, hepatocellular vacuolation), and/or lethality at doses as low as 130 mg/kg body weight, although there was no dose-response relation. However, this single-day exposure protocol does not mimic the multiple-day field exposures required to cause mortality in rodent pest species and non-target birds and mammals. In 7-day feeding trials, similar toxic effects were observed in owls fed diets containing 2.15, 9.55 or 22.6 ppm DPN, but at a small fraction (<5%) of the acute oral dose. In the dietary trial, the average lowest-observed-adverse-effect-level for prolonged clotting time was 1.68 mg DPN/kg owl/week (0.24 mg/kg owl/day; 0.049 mg/owl/day) and the lowest lethal dose was 5.75 mg DPN/kg owl/week (0.82 mg/kg owl/day). In this feeding trial, DPN concentration in liver ranged from 0.473 to 2.21 µg/g wet weight, and was directly related to the daily and cumulative dose consumed by each owl. A probabilistic risk assessment indicated that daily exposure to as little as 3-5 g of liver from DPN-poisoned rodents for 7 days could result in prolonged clotting time in the endangered Hawaiian short-eared owl (Asio flammeus sandwichensis) and Hawaiian hawk (Buteo solitarius), and daily exposure to greater quantities (9-13 g of liver) could result in low-level mortality. These findings can assist natural resource managers in weighing the costs and benefits of anticoagulant rodenticide use in pest control and eradication programs.


Assuntos
Anticoagulantes/toxicidade , Fenindiona/análogos & derivados , Rodenticidas/toxicidade , Estrigiformes/fisiologia , Administração Oral , Animais , Anticoagulantes/farmacocinética , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Análise Custo-Benefício , Feminino , Hemorragia/induzido quimicamente , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Longevidade/efeitos dos fármacos , Masculino , Fenindiona/farmacocinética , Fenindiona/toxicidade , Rodenticidas/farmacocinética , Especificidade da Espécie , Testes de Toxicidade , Tempo de Coagulação do Sangue Total
11.
J Wildl Dis ; 48(1): 207-11, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22247393

RESUMO

White-nose syndrome, associated with the fungal skin infection geomycosis, caused regional population collapse in bats in North America. Our results, based on histopathology, show the presence of white-nose syndrome in Europe. Dermatohistopathology on two bats (Myotis myotis) found dead in March 2010 with geomycosis in the Czech Republic had characteristics resembling Geomyces destructans infection in bats confirmed with white-nose syndrome in US hibernacula. In addition, a live M. myotis, biopsied for histopathology during hibernation in April 2011, had typical fungal infection with cupping erosion and invasion of muzzle skin diagnostic for white-nose syndrome and conidiospores identical to G. destructans that were genetically confirmed as G. destructans.


Assuntos
Ascomicetos/isolamento & purificação , Quirópteros/microbiologia , Dermatomicoses/veterinária , Surtos de Doenças/veterinária , Animais , Ascomicetos/classificação , Dermatomicoses/epidemiologia , Dermatomicoses/microbiologia , Dermatomicoses/patologia , Europa (Continente)/epidemiologia , Feminino , Hibernação , Masculino
12.
Arch Environ Contam Toxicol ; 62(1): 145-53, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21512804

RESUMO

To evaluate the potential toxicity of copper (Cu) in raptors that may consume Cu bullets, shotgun pellets containing Cu, or Cu fragments as they feed on wildlife carcasses, we studied the effects of metallic Cu exposure in a surrogate, the American kestrel (Falco sparverius). Sixteen kestrels were orally administered 5 mg Cu/g body mass in the form of Cu pellets (1.18-2.00 mm in diameter) nine times during 38 days and 10 controls were sham gavaged on the same schedule. With one exception, all birds retained the pellets for at least 1 h, but most (69%) regurgitated pellets during a 12-h monitoring period. Hepatic Cu concentrations were greater in kestrels administered Cu than in controls, but there was no difference in Cu concentrations in the blood between treated and control birds. Concentration of the metal-binding protein metallothionein was greater in male birds that received Cu than in controls, whereas concentrations in female birds that received Cu were similar to control female birds. Hepatic Cu and metallothionein concentrations in kestrels were significantly correlated. Histopathologic alterations were noted in the pancreas of four treated kestrels and two controls, but these changes were not associated with hepatic or renal Cu concentrations, and no lesions were seen in other tissues. No clinical signs were observed, and there was no treatment effect on body mass; concentrations of Cu, hemoglobin, or methemoglobin in the blood; or Cu concentrations in kidney, plasma biochemistries, or hematocrit. Based on the parameters we measured, ingested Cu pellets pose little threat to American kestrels (and presumably phylogenetically related species), although the retention time of pellets in the stomach was of relatively short duration. Birds expected to regurgitate Cu fragments with a frequency similar to kestrels are not likely to be adversely affected by Cu ingestion, but the results of our study do not completely rule out the potential for toxicity in species that might retain Cu fragments for a longer time.


Assuntos
Cobre/toxicidade , Falconiformes/metabolismo , Contaminação de Alimentos , Administração Oral , Animais , Peso Corporal/efeitos dos fármacos , Cobre/administração & dosagem , Cobre/farmacocinética , Feminino , Armas de Fogo , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metalotioneína/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/patologia
13.
Nature ; 480(7377): 376-8, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22031324

RESUMO

White-nose syndrome (WNS) has caused recent catastrophic declines among multiple species of bats in eastern North America. The disease's name derives from a visually apparent white growth of the newly discovered fungus Geomyces destructans on the skin (including the muzzle) of hibernating bats. Colonization of skin by this fungus is associated with characteristic cutaneous lesions that are the only consistent pathological finding related to WNS. However, the role of G. destructans in WNS remains controversial because evidence to implicate the fungus as the primary cause of this disease is lacking. The debate is fuelled, in part, by the assumption that fungal infections in mammals are most commonly associated with immune system dysfunction. Additionally, the recent discovery that G. destructans commonly colonizes the skin of bats of Europe, where no unusual bat mortality events have been reported, has generated further speculation that the fungus is an opportunistic pathogen and that other unidentified factors are the primary cause of WNS. Here we demonstrate that exposure of healthy little brown bats (Myotis lucifugus) to pure cultures of G. destructans causes WNS. Live G. destructans was subsequently cultured from diseased bats, successfully fulfilling established criteria for the determination of G. destructans as a primary pathogen. We also confirmed that WNS can be transmitted from infected bats to healthy bats through direct contact. Our results provide the first direct evidence that G. destructans is the causal agent of WNS and that the recent emergence of WNS in North America may represent translocation of the fungus to a region with a naive population of animals. Demonstration of causality is an instrumental step in elucidating the pathogenesis and epidemiology of WNS and in guiding management actions to preserve bat populations against the novel threat posed by this devastating infectious disease.


Assuntos
Ascomicetos/patogenicidade , Quirópteros/microbiologia , Micoses/veterinária , Nariz/microbiologia , Nariz/patologia , Animais , Quirópteros/anatomia & histologia , Europa (Continente)/epidemiologia , Micoses/microbiologia , Micoses/mortalidade , Micoses/transmissão , América do Norte/epidemiologia , Análise de Sobrevida , Síndrome , Asas de Animais/microbiologia , Asas de Animais/patologia
14.
Influenza Other Respir Viruses ; 5(5): 365-72, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21668687

RESUMO

BACKGROUND: Shorebirds (Charadriiformes) are considered one of the primary reservoirs of avian influenza. Because these species are highly migratory, there is concern that infected shorebirds may be a mechanism by which highly pathogenic avian influenza virus (HPAIV) H5N1 could be introduced into North America from Asia. Large numbers of dunlin (Calidris alpina) migrate from wintering areas in central and eastern Asia, where HPAIV H5N1 is endemic, across the Bering Sea to breeding areas in Alaska. Low pathogenic avian influenza virus has been previously detected in dunlin, and thus, dunlin represent a potential risk to transport HPAIV to North America. To date no experimental challenge studies have been performed in shorebirds. METHODS: Wild dunlin were inoculated intranasally and intrachoanally various doses of HPAIV H5N1. The birds were monitored daily for virus excretion, disease signs, morbidity, and mortality. RESULTS: The infectious dose of HPAIV H5N1 in dunlin was determined to be 10(1.7) EID(50)/100 µl and that the lethal dose was 10(1.83) EID(50)/100 µl. Clinical signs were consistent with neurotropic disease, and histochemical analyses revealed that infection was systemic with viral antigen and RNA most consistently found in brain tissues. Infected birds excreted relatively large amounts of virus orally (10(4) EID(50)) and smaller amounts cloacally. CONCLUSIONS: Dunlin are highly susceptible to infection with HPAIV H5N1. They become infected after exposure to relatively small doses of the virus and if they become infected, they are most likely to suffer mortality within 3-5 days. These results have important implications regarding the risks of transport and transmission of HPAIV H5N1 to North America by this species and raises questions for further investigation.


Assuntos
Migração Animal , Charadriiformes/fisiologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/patologia , Influenza Aviária/transmissão , Animais , Ásia , Charadriiformes/virologia , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , América do Norte , Estações do Ano
15.
Environ Toxicol Chem ; 30(5): 1213-22, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21337606

RESUMO

The acute oral toxicity of the anticoagulant rodenticide diphacinone was found to be over 20 times greater in American kestrels (Falco sparverius; median lethal dose 96.8 mg/kg body weight) compared with Northern bobwhite (Colinus virginianus) and mallards (Anas platyrhynchos). Modest evidence of internal bleeding was observed at necropsy, although histological examination of heart, liver, kidney, lung, intestine, and skeletal muscle revealed hemorrhage over a wide range of doses (35.1-675 mg/kg). Residue analysis suggests that the half-life of diphacinone in the liver of kestrels that survived was relatively short, with the majority of the dose cleared within 7 d of exposure. Several precise and sensitive clotting assays (prothrombin time, Russell's viper venom time, thrombin clotting time) were adapted for use in this species, and oral administration of diphacinone at 50 mg/kg increased prothrombin time and Russell's viper venom time at 48 and 96 h postdose compared with controls. Prolongation of in vitro clotting time reflects impaired coagulation complex activity, and generally corresponded with the onset of overt signs of toxicity and lethality. In view of the toxicity and risk evaluation data derived from American kestrels, the involvement of diphacinone in some raptor mortality events, and the paucity of threshold effects data following short-term dietary exposure for birds of prey, additional feeding trials with captive raptors are warranted to characterize more fully the risk of secondary poisoning.


Assuntos
Anticoagulantes/toxicidade , Falconiformes/metabolismo , Fenindiona/análogos & derivados , Rodenticidas/toxicidade , Animais , Coagulação Sanguínea/efeitos dos fármacos , Colinus/metabolismo , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Fígado/patologia , Pulmão/efeitos dos fármacos , Pulmão/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Fenindiona/toxicidade , Baço/efeitos dos fármacos , Baço/patologia , Testes de Toxicidade Aguda
16.
Am J Trop Med Hyg ; 82(5): 937-44, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20439979

RESUMO

Nestling birds are rarely sampled in the field for most arboviruses, yet they may be important in arbovirus amplification cycles. We sampled both nestling and adult house sparrows (Passer domesticus) in western Nebraska for West Nile virus (WNV) or WNV-specific antibodies throughout the summer of 2008 and describe pathology in naturally infected nestlings. Across the summer, 4% of nestling house sparrows were WNV-positive; for the month of August alone, 12.3% were positive. Two WNV-positive nestlings exhibited encephalitis, splenomegaly, hepatic necrosis, nephrosis, and myocarditis. One nestling sparrow had large mural thrombi in the atria and ventricle and immunohistochemical staining of WNV antigen in multiple organs including the wall of the aorta and pulmonary artery; cardiac insufficiency thus may have been a cause of death. Adult house sparrows showed an overall seroprevalence of 13.8% that did not change significantly across the summer months. The WNV-positive nestlings and the majority of seropositive adults were detected within separate spatial clusters. Nestling birds, especially those reared late in the summer when WNV activity is typically greatest, may be important in virus amplification.


Assuntos
Doenças das Aves/epidemiologia , Pardais , Febre do Nilo Ocidental/veterinária , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Anticorpos Antivirais/sangue , Doenças das Aves/mortalidade , Doenças das Aves/virologia , Coração/virologia , Fígado/virologia , Nebraska/epidemiologia , Prevalência , RNA Viral/genética , RNA Viral/isolamento & purificação , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/mortalidade , Vírus do Nilo Ocidental/classificação , Vírus do Nilo Ocidental/imunologia
17.
J Wildl Dis ; 46(1): 23-32, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20090015

RESUMO

Alphaviruses (Togaviridae) infect wild birds, but clinical illness and death attributable to virus in naturally infected birds is rarely reported, particularly for small passerine species or nestlings. Buggy Creek virus is a unique alphavirus in the Western equine encephalomyelitis virus (WEEV) complex that is vectored by the cimicid swallow bug (Oeciacus vicarius), an ectoparasite of the colonially nesting Cliff Swallow (Petrochelidon pyrrhonota) and the introduced House Sparrow (Passer domesticus). While sampling birds for Buggy Creek virus (BCRV) during the summers of 2007 and 2008, we discovered large numbers of clinically ill or dead House Sparrow nestlings. Ill nestlings exhibited ataxia, torticollis, paresis, and lethargy. Histologic examination revealed that encephalitis was the most common finding, followed by myositis, myocarditis, and hepatic changes, but pathology was highly variable. We isolated BCRV from brain tissue in most of the ill or dead nestlings, and from blood, liver, kidney, spleen, lung, feather pulp, and skin in some birds. To our knowledge, this is the first report of clinical illness, gross pathology, and histopathology for a WEEV-complex alphavirus in a field-collected passerine species.


Assuntos
Infecções por Alphavirus/veterinária , Doenças das Aves/patologia , Doenças das Aves/virologia , Pardais/virologia , Alphavirus/patogenicidade , Infecções por Alphavirus/patologia , Infecções por Alphavirus/virologia , Animais , Animais Recém-Nascidos/virologia , Animais Selvagens/virologia , Encéfalo/patologia , Encéfalo/virologia , Feminino , Masculino , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária
18.
PLoS One ; 4(8): e6592, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19668372

RESUMO

Monkeypox viruses (MPXV) cause human monkeypox, a zoonotic smallpox-like disease endemic to Africa, and are of worldwide public health and biodefense concern. Using viruses from the Congo (MPXV-2003-Congo-358) and West African (MPXV-2003-USA-044) clades, we constructed recombinant viruses that express the luciferase gene (MPXV-Congo/Luc+and MPXV-USA-Luc+) and compared their viral infection in mice by biophotonic imaging. BALB/c mice became infected by both MPXV clades, but they recovered and cleared the infection within 10 days post-infection (PI). However, infection in severe combined immune deficient (SCID) BALB/c mice resulted in 100% lethality. Intraperitoneal (IP) injection of both MPXV-Congo and MPXV-Congo/Luc+resulted in a systemic clinical disease and the same mean time-to-death at 9 (+/-0) days post-infection. Likewise, IP injection of SCID-BALB/c mice with MPXV-USA or the MPXV-USA-Luc+, resulted in similar disease but longer (P<0.05) mean time-to-death (11+/-0 days) for both viruses compared to the Congo strains. Imaging studies in SCID mice showed luminescence in the abdomen within 24 hours PI with subsequent spread elsewhere. Animals infected with the MPXV-USA/Luc+had less intense luminescence in tissues than those inoculated with MPXV-Congo/Luc+, and systemic spread of the MPXV-USA/Luc+virus occurred approximately two days later than the MPXV-Congo/Luc+. The ovary was an important target for viral replication as evidenced by the high viral titers and immunohistochemistry. These studies demonstrate the suitability of a mouse model and biophotonic imaging to compare the disease progression and tissue tropism of MPX viruses.


Assuntos
Monkeypox virus/patogenicidade , Animais , Luciferases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Monkeypox virus/genética
19.
Science ; 323(5911): 227, 2009 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18974316

RESUMO

White-nose syndrome (WNS) is a condition associated with an unprecedented bat mortality event in the northeastern United States. Since the winter of 2006*2007, bat declines exceeding 75% have been observed at surveyed hibernacula. Affected bats often present with visually striking white fungal growth on their muzzles, ears, and/or wing membranes. Direct microscopy and culture analyses demonstrated that the skin of WNS-affected bats is colonized by a psychrophilic fungus that is phylogenetically related to Geomyces spp. but with a conidial morphology distinct from characterized members of this genus. This report characterizes the cutaneous fungal infection associated with WNS.


Assuntos
Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Quirópteros/microbiologia , Dermatomicoses/veterinária , Pele/microbiologia , Animais , Ascomicetos/citologia , Ascomicetos/genética , Quirópteros/fisiologia , Temperatura Baixa , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/microbiologia , Doenças Transmissíveis Emergentes/patologia , Doenças Transmissíveis Emergentes/veterinária , Dermatomicoses/epidemiologia , Dermatomicoses/microbiologia , Dermatomicoses/patologia , Hibernação , New England/epidemiologia , Onygenales/classificação , Onygenales/citologia , Onygenales/genética , Onygenales/crescimento & desenvolvimento , Filogenia , Pele/patologia , Esporos Fúngicos/citologia
20.
Environ Toxicol Chem ; 27(11): 2341-5, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18476752

RESUMO

The nonsteroidal anti-inflammatory drug diclofenac is extremely toxic to Old World Gyps vultures (median lethal dose -0.1-0.2 mg/kg), evoking visceral gout, renal necrosis, and mortality within a few days of exposure. Unintentional secondary poisoning of vultures that fed upon carcasses of diclofenac-treated livestock decimated populations in the Indian subcontinent. Because of the widespread use of diclofenac and other cyclooxygenase-2 inhibiting drugs, a toxicological study was undertaken in turkey vultures (Cathartes aura) as an initial step in examining sensitivity of New World scavenging birds. Two trials were conducted entailing oral gavage of diclofenac at doses ranging from 0.08 to 25 mg/kg body weight. Birds were observed for 7 d, blood samples were collected for plasma chemistry (predose and 12, 24, and 48 h and 7 d postdose), and select individuals were necropsied. Diclofenac failed to evoke overt signs of toxicity, visceral gout, renal necrosis, or elevate plasma uric acid at concentrations greater than 100 times the estimated median lethal dose reported for Gyps vultures. For turkey vultures receiving 8 or 25 mg/kg, the plasma half-life of diclofenac was estimated to be 6 h, and it was apparently cleared after several days as no residues were detectable in liver or kidney at necropsy. Differential sensitivity among avian species is a hallmark of cyclooxygenase-2 inhibitors, and despite the tolerance of turkey vultures to diclofenac, additional studies in related scavenging species seem warranted.


Assuntos
Anti-Inflamatórios não Esteroides/toxicidade , Diclofenaco/toxicidade , Animais , Aves , Tolerância a Medicamentos , Feminino , Masculino , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...