Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogene ; 36(16): 2286-2296, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27748765

RESUMO

Drugs that inhibit estrogen receptor-α (ER) activity have been highly successful in treating and reducing breast cancer progression in ER-positive disease. However, resistance to these therapies presents a major clinical problem. Recent genetic studies have shown that mutations in the ER gene are found in >20% of tumours that progress on endocrine therapies. Remarkably, the great majority of these mutations localize to just a few amino acids within or near the critical helix 12 region of the ER hormone binding domain, where they are likely to be single allele mutations. Understanding how these mutations impact on ER function is a prerequisite for identifying methods to treat breast cancer patients featuring such mutations. Towards this end, we used CRISPR-Cas9 genome editing to make a single allele knock-in of the most commonly mutated amino acid residue, tyrosine 537, in the estrogen-responsive MCF7 breast cancer cell line. Genomic analyses using RNA-seq and ER ChIP-seq demonstrated that the Y537S mutation promotes constitutive ER activity globally, resulting in estrogen-independent growth. MCF7-Y537S cells were resistant to the anti-estrogen tamoxifen and fulvestrant. Further, we show that the basal transcription factor TFIIH is constitutively recruited by ER-Y537S, resulting in ligand-independent phosphorylation of Serine 118 (Ser118) by the TFIIH kinase, cyclin-dependent kinase (CDK)7. The CDK7 inhibitor, THZ1 prevented Ser118 phosphorylation and inhibited growth of MCF7-Y537S cells. These studies confirm the functional importance of ER mutations in endocrine resistance, demonstrate the utility of knock-in mutational models for investigating alternative therapeutic approaches and highlight CDK7 inhibition as a potential therapy for endocrine-resistant breast cancer mediated by ER mutations.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptor alfa de Estrogênio/genética , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Sistemas CRISPR-Cas , Proliferação de Células/efeitos dos fármacos , Quinases Ciclina-Dependentes/antagonistas & inibidores , Antagonistas de Estrogênios/farmacologia , Estrogênios/farmacologia , Feminino , Técnicas de Introdução de Genes , Histonas/metabolismo , Humanos , Células MCF-7 , Mutação , Fosforilação , Serina/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Quinase Ativadora de Quinase Dependente de Ciclina
2.
Biochem Biophys Res Commun ; 284(2): 247-54, 2001 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-11394869

RESUMO

The mating-specific heterotrimeric G(alpha) protein of Saccharomyces cerevisiae, Gpa1, negatively regulates activation of the pheromone response pathway both by sequestering G(beta)gamma and by triggering an adaptive response through an as yet unknown mechanism. Previous genetic studies identified mutant alleles of GPA1 that downregulate the pheromone response independently of the pheromone receptor (GPA1E364K), or through a receptor-dependent mechanism (GPA1N388D). To further our understanding of the mechanism of action of these mutant alleles, their corresponding proteins were purified and subjected to biochemical analysis. The receptor-dependent activity of Gpa1N388D was further analyzed using yeast strains expressing constitutively active receptor (Ste2) mutants, and C-terminal truncation mutant forms of Gpa1. A combination of G(alpha) affinity chromatography, GTP binding/hydrolysis studies, and genetic analysis allowed us to assign a distinct mechanism of action to each of these mutant proteins.


Assuntos
Adaptação Fisiológica/fisiologia , Subunidades alfa de Proteínas de Ligação ao GTP , Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Mutação , Feromônios/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição , Alelos , Compostos de Alumínio/química , Substituição de Aminoácidos , Sítios de Ligação/fisiologia , Cromatografia de Afinidade , Regulação para Baixo/efeitos dos fármacos , Fluoretos/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Guanosina Trifosfato/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/farmacologia , Histidina/genética , Histidina/metabolismo , Modelos Moleculares , Feromônios/antagonistas & inibidores , Ligação Proteica/fisiologia , Receptores de Fator de Acasalamento , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...