Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 106(6): 734-747, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32386559

RESUMO

The calcium-sensing receptor (CaSR) regulates serum calcium concentrations. CASR loss- or gain-of-function mutations cause familial hypocalciuric hypercalcemia type 1 (FHH1) or autosomal-dominant hypocalcemia type 1 (ADH1), respectively, but the population prevalence of FHH1 or ADH1 is unknown. Rare CASR variants were identified in whole-exome sequences from 51,289 de-identified individuals in the DiscovEHR cohort derived from a single US healthcare system. We integrated bioinformatics pathogenicity triage, mean serum Ca concentrations, and mode of inheritance to identify potential FHH1 or ADH1 variants, and we used a Sequence Kernel Association Test (SKAT) to identify rare variant-associated diseases. We identified predicted heterozygous loss-of-function CASR variants (6 different nonsense/frameshift variants and 12 different missense variants) in 38 unrelated individuals, 21 of whom were hypercalcemic. Missense CASR variants were identified in two unrelated hypocalcemic individuals. Functional studies showed that all hypercalcemia-associated missense variants impaired heterologous expression, plasma membrane targeting, and/or signaling, whereas hypocalcemia-associated missense variants increased expression, plasma membrane targeting, and/or signaling. Thus, 38 individuals with a genetic diagnosis of FHH1 and two individuals with a genetic diagnosis of ADH1 were identified in the 51,289 cohort, giving a prevalence in this population of 74.1 per 100,000 for FHH1 and 3.9 per 100,000 for ADH1. SKAT combining all nonsense, frameshift, and missense loss-of-function variants revealed associations with cardiovascular, neurological, and other diseases. In conclusion, FHH1 is a common cause of hypercalcemia, with prevalence similar to that of primary hyperparathyroidism, and is associated with altered disease risks, whereas ADH1 is a major cause of non-surgical hypoparathyroidism.


Assuntos
Atenção à Saúde/estatística & dados numéricos , Hipercalcemia/congênito , Adulto , Idoso , Idoso de 80 Anos ou mais , Cálcio/sangue , Estudos de Coortes , Feminino , Genes Dominantes/genética , Heterozigoto , Humanos , Hipercalcemia/genética , Masculino , Pessoa de Meia-Idade , Mutação , Fenótipo , Prevalência , Receptores de Detecção de Cálcio/genética , Estados Unidos
2.
J Biol Chem ; 294(48): 18109-18121, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31628190

RESUMO

The pace of deorphanization of G protein-coupled receptors (GPCRs) has slowed, and new approaches are required. Small molecule targeting of orphan GPCRs can potentially be of clinical benefit even if the endogenous receptor ligand has not been identified. Many GPCRs lack common variants that lead to reproducible genome-wide disease associations, and rare-variant approaches have emerged as a viable alternative to identify disease associations for such genes. Therefore, our goal was to prioritize orphan GPCRs by determining their associations with human diseases in a large clinical population. We used sequence kernel association tests to assess the disease associations of 85 orphan or understudied GPCRs in an unselected cohort of 51,289 individuals. Using rare loss-of-function variants, missense variants predicted to be pathogenic or likely pathogenic, and a subset of rare synonymous variants that cause large changes in local codon bias as independent data sets, we found strong, phenome-wide disease associations shared by two or more variant categories for 39% of the GPCRs. To validate the bioinformatics and sequence kernel association test analyses, we functionally characterized rare missense and synonymous variants of GPR39, a family A GPCR, revealing altered expression or Zn2+-mediated signaling for members of both variant classes. These results support the utility of rare variant analyses for identifying disease associations for GPCRs that lack impactful common variants. We highlight the importance of rare synonymous variants in human physiology and argue for their routine inclusion in any comprehensive analysis of genomic variants as potential causes of disease.


Assuntos
Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Mutação Silenciosa , Estudo de Associação Genômica Ampla , Humanos
3.
Science ; 354(6319)2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008010

RESUMO

Familial hypercholesterolemia (FH) remains underdiagnosed despite widespread cholesterol screening. Exome sequencing and electronic health record (EHR) data of 50,726 individuals were used to assess the prevalence and clinical impact of FH-associated genomic variants in the Geisinger Health System. The estimated FH prevalence was 1:256 in unselected participants and 1:118 in participants ascertained via the cardiac catheterization laboratory. FH variant carriers had significantly increased risk of coronary artery disease. Only 24% of carriers met EHR-based presequencing criteria for probable or definite FH diagnosis. Active statin use was identified in 58% of carriers; 46% of statin-treated carriers had a low-density lipoprotein cholesterol level below 100 mg/dl. Thus, we find that genomic screening can prompt the diagnosis of FH patients, most of whom are receiving inadequate lipid-lowering therapy.


Assuntos
Corantes/uso terapêutico , Uso de Medicamentos/estatística & dados numéricos , Testes Genéticos , Hiperlipoproteinemia Tipo II/epidemiologia , Hiperlipoproteinemia Tipo II/genética , Doença da Artéria Coronariana/epidemiologia , Atenção à Saúde , Registros Eletrônicos de Saúde , Exoma/genética , Heterozigoto , Humanos , Hiperlipoproteinemia Tipo II/diagnóstico , Lipoproteínas LDL/sangue , Prevalência , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...