Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 851(Pt 2): 158062, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35981579

RESUMO

Understanding boreal/hemi-boreal forest growth sensitivity to seasonal variations in temperature and water availability provides important basis for projecting the potential impacts of climate change on the productivity of these ecosystems. Our best available information currently comes from a limited number of field experiments and terrestrial biosphere model (TBM) simulations of varying predictive accuracy. Here, we assessed the sensitivity of annual boreal/hemi-boreal forest growth in Canada to yearly fluctuations in seasonal climate variables using a large tree-ring dataset and compared this to the climate sensitivity of annual net primary productivity (NPP) estimates obtained from fourteen TBMs. We found that boreal/hemi-boreal forest growth sensitivity to fluctuations in seasonal temperature and precipitation variables changed along a southwestern to northeastern gradient, with growth limited almost entirely by temperature in the northeast and west and by water availability in the southwest. We also found a lag in growth climate sensitivity, with growth largely determined by the climate during the summer prior to ring formation. Analyses of NPP sensitivity to the same climate variables produced a similar southwest to northeast gradient in growth climate sensitivity for NPP estimates from all but three TBMs. However, analyses of growth from tree-ring data and analyses of NPP from TBMs produced contrasting evidence concerning the key climate variables limiting growth. While analyses of NPP primarily indicated a positive relationship between growth and seasonal temperature, tree-ring analyses indicated negative growth relationships to temperature. Also, the positive effect of precipitation on NPP derived from most TBMs was weaker than the positive effect of precipitation on tree-ring based growth: temperature had a more important limiting effect on NPP than tree-ring data indicated. These mismatches regarding the key climate variables limiting growth suggested that characterization of tree growth in TBMs might need revision, particularly regarding the effects of stomatal conductance and carbohydrate reserve dynamics.


Assuntos
Taiga , Árvores , Florestas , Ecossistema , Canadá , Mudança Climática , Água , Carboidratos
2.
Ecol Appl ; 22(8): 2078-90, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23387111

RESUMO

Standing dead trees (snags) and downed woody debris contribute substantially to the carbon (C) budget of Canada's forest. Accurate parameterization of the C transfer rates (CTRs) from snags to downed woody debris is important for forest C dynamics models such as the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), but CTRs are rarely measured or reported in the literature. Therefore, forest C models generally use snag fall rates (FRs) available in the literature, as a proxy for CTRs. However, FRs are based on stem counts while CTRs refer to mass transfers. Stem mass and stem number are not linearly related, with small diameter trees representing disproportionately lower C mass transfers. Therefore this proxy, while convenient, may bias C transfer from standing dead to downed woody material. Here, we combined tree data from 10802 sample plots and previously published species-specific individual-tree relationships between tree diameter (diameter at breast height, dbh) and fall rate to derive stand-level estimates of CTRs for the CBM-CFS3. We estimated CTRs and FRs and used the FR values to validate this approach by comparing them with standardized FR values compiled from the literature. FRs generally differed from CTRs. The overall CTR (4.78% +/- 0.02% per year, mean +/- SE) was significantly smaller than the overall FR (5.40% +/- 0.02% per year; mean +/- SE). Both the difference between FR and CTR (FR - CTR) and the CTR itself varied by ecozone, with ecozone means for CTR ranging from 3.94% per year to 10.02% per year. This variation was explained, in part, by heterogeneity in species composition, size (dbh distribution), structure, and age of the stands. The overall mean CTR estimated for the Snag_Stemwood (4.78% per year) and the Snag_Branches (11.95% per year) pools of the CBM-CFS3 were approximately 50% and 20% higher than the current default rates used in the CBM-CFS3 of 3.2% and 10.0%, respectively. Our results demonstrate that using CTRs to estimate the annual C transfer from standing dead trees to downed woody biomass will yield more accurate estimates of C fluxes than using a FR proxy, and this accuracy could be further improved by accounting for differences in ecozone, stand component (hardwood or softwood), or lead species.


Assuntos
Carbono/metabolismo , Árvores/metabolismo , Canadá , Ecossistema , Monitoramento Ambiental , Modelos Teóricos , Especificidade da Espécie , Madeira
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...