Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; : e202400168, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738599

RESUMO

Higher fungi of the genus Armillaria belonging to the phylum Basidiomycota produce bioactive sesquiterpenoid aryl esters called melleolides. A bioactivity-guided discovery process led to the identification of the new melleolide 5'­methoxyarmillane (1) in organic extracts from the mycelium of Armillaria ostoyae. Remarkably, supplementation of rapeseed oil to the culture medium potato dextrose broth increased the production of 1 by a factor of six during the course of the 35 days fermentation. Compound 1 was isolated and its structure elucidated by UHPLC-QTOF-HR-MS/MS and NMR spectroscopy. It showed toxicity against Madin-Darby canine kidney II (MDCK II, IC50 19.2 mg/mL, 44.1 mM) and human lung cancer Calu-3 cells (IC50 15.2 mg/mL, 34.9 mM) as well as moderate bioactivity against Mycobacterium tuberculosis (MIC 8 mg/mL, 18.4 mM) and Mycobacterium smegmatis (MIC 16 mg/mL, 36.8 mM), but not against Staphylococcus aureus, Escherichia coli, Candida albicans, and Septoria tritici. No inhibitory effects of 1 against the influenza viruses H3N2, H1N1pdm, B/Malaysia, and B/Massachusetts were observed.

2.
STAR Protoc ; 4(3): 102531, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37682715

RESUMO

Biosynthetic gene clusters of natural products often harbor genes of unknown function, which are difficult to characterize. Here, we present a protocol for the functional analysis in vitro and in vivo of these biosynthetic genes by heterologous expression in E. coli. We describe steps for the expression of genes of interest in an established E. coli strain optimized to heterologously express natural products. We then detail the expression of a His-tagged gene to deduce the specific function of the protein. For complete details on the use and execution of this protocol, please refer to Böhringer et al.1.


Assuntos
Produtos Biológicos , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Família Multigênica/genética , Produtos Biológicos/metabolismo
3.
Cell Chem Biol ; 30(8): 943-952.e7, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37451267

RESUMO

Darobactins represent a class of ribosomally synthesized and post-translationally modified peptide (RiPP) antibiotics featuring a rare bicyclic structure. They target the Bam-complex of Gram-negative bacteria and exhibit in vivo activity against drug-resistant pathogens. First isolated from Photorhabdus species, the corresponding biosynthetic gene clusters (BGCs) are widespread among γ-proteobacteria, including the genera Vibrio, Yersinia, and Pseudoalteromonas (P.). While the organization of the BGC core is highly conserved, a small subset of Pseudoalteromonas carries an extended BGC with additional genes. Here, we report the identification of brominated and dehydrated darobactin derivatives from P. luteoviolacea strains. The marine derivatives are active against multidrug-resistant (MDR) Gram-negative bacteria and showed solubility and plasma protein binding ability different from darobactin A, rendering it more active than darobactin A. The halogenation reaction is catalyzed by DarH, a new class of flavin-dependent halogenases with a novel fold.


Assuntos
Fenilpropionatos , Fenilpropionatos/metabolismo , Bactérias Gram-Negativas/genética , Metaboloma
4.
Microbiol Spectr ; 11(1): e0443722, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36692293

RESUMO

The emergence and spread of antimicrobial resistance (AMR) in Gram-negative pathogens, such as carbapenem-resistant Pseudomonas aeruginosa, pose an increasing threat to health care. Patients with immunodeficiencies or chronic pulmonary disease, like cystic fibrosis (CF), are particularly vulnerable to Pseudomonas infections and depend heavily on antibiotic therapy. To broaden limited treatment options, this study evaluated the potency of the recently licensed drugs ceftazidime-avibactam (CZA), ceftolozane-tazobactam (C/T), and cefiderocol (FDC) as well as two novel preclinical antibiotics, darobactins B (DAR B) and B9 (DAR B9), against clinical P. aeruginosa isolates derived from respiratory samples of CF patients. We observed high levels of resistance to all three newly licensed drugs, with cefiderocol exhibiting the best activity. From the 66 investigated P. aeruginosa isolates, a total of 53% were resistant to CZA, 49% to C/T, and 30% to FDC. Strikingly, 52 of the evaluated isolates were obtained from CF patients prior to market introduction of the drugs. Thus, our results suggest that resistance to CZA, C/T, and FDC may be due to preexisting resistance mechanisms. On the other hand, our two novel preclinical compounds performed better than (CZA and C/T) or close to (FDC) the licensed drugs-most likely due to the novel mode of action. Thus, our results highlight the necessity of global consistency in the area of antibiotic stewardship to prevent AMR from further impairing the potency of antibiotics in clinical practice. Ultimately, this study demonstrates the urgency to support the development of novel antimicrobials, preferably with a new mode of action such as darobactins B and B9, two very promising antimicrobial compounds for the treatment of critically ill patients suffering from multidrug-resistant Gram-negative (MRGN) infections. IMPORTANCE Antimicrobial resistance (AMR) represents an ever increasing threat to the health care system. Even recently licensed drugs are often not efficient for the treatment of infections caused by Gram-negative bacteria, like Pseudomonas aeruginosa, a causative agent of lung infections. To address this unmet medical need, innovative antibiotics, which possess a new mode of action, need to be developed. Here, the antibiogram of clinical isolates derived from cystic fibrosis patients was generated and new bicyclic heptapeptides, which inhibit the outer membrane protein BamA, exhibited strong activity, also against multidrug-resistant isolates.


Assuntos
Fibrose Cística , Infecções por Pseudomonas , Humanos , Adolescente , Criança , Pseudomonas aeruginosa , Fibrose Cística/complicações , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Tazobactam/farmacologia , Tazobactam/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla , Cefiderocol
5.
Mar Drugs ; 20(10)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36286444

RESUMO

Marine flavobacterium Tenacibaculum discolor sv11 has been proven to be a promising producer of bioactive nitrogen-containing heterocycles. A chemical investigation of T. discolor sv11 revealed seven new heterocycles, including the six new imidazolium-containing alkaloids discolins C-H (1−6) and one pyridinium-containing alkaloid dispyridine A (7). The molecular structure of each compound was elucidated by analysis of NMR and HR-ESI-MS data. Furthermore, enzymatic decarboxylation of tryptophan and tyrosine to tryptamine and tyramine catalyzed by the decarboxylase DisA was investigated using in vivo and in vitro experiments. The antimicrobial activity of the isolated compounds (1−7) was evaluated. Discolin C and E (1 and 3) exhibited moderate activity against Gram-positive Bacillus subtilis DSM10, Mycobacterium smegmatis ATCC607, Listeria monocytogenes DSM20600 and Staphylococcus aureus ATCC25923, with MIC values ranging from 4 µg/mL to 32 µg/mL.


Assuntos
Alcaloides , Anti-Infecciosos , Carboxiliases , Flavobacterium , Triptofano , Alcaloides/química , Nitrogênio , Triptaminas , Tiramina , Tirosina , Antibacterianos/química , Testes de Sensibilidade Microbiana
6.
J Nat Prod ; 85(4): 1039-1051, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35416664

RESUMO

The bacterial genus Tenacibaculum has been associated with various ecological roles in marine environments. Members of this genus can act, for example, as pathogens, predators, or episymbionts. However, natural products produced by these bacteria are still unknown. In the present work, we investigated a Tenacibaculum strain for the production of antimicrobial metabolites. Six new phenethylamine (PEA)-containing alkaloids, discolins A and B (1 and 2), dispyridine (3), dispyrrolopyridine A and B (4 and 5), and dispyrrole (6), were isolated from media produced by the predatory bacterium Tenacibaculum discolor sv11. Chemical structures were elucidated by analysis of spectroscopic data. Alkaloids 4 and 5 exhibited strong activity against Gram-positive Bacillus subtilis DSM10, Mycobacterium smegmatis ATCC607, Listeria monocytogenes DSM20600, and Staphylococcus aureus ATCC25923, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 4 µg/mL, and moderate activity against Candida albicans FH2173 and Aspergillus flavus ATCC9170. Compound 6 displayed moderate antibacterial activities against Gram-positive bacteria. Dispyrrolopyridine A (4) was active against efflux pump deficient Escherichia coli ATCC25922 ΔtolC, with an MIC value of 8 µg/mL, as well as against Caenorhabditis elegans N2 with an MIC value of 32 µg/mL. Other compounds were inactive against these microorganisms. The biosynthetic route toward discolins A and B (1 and 2) was investigated using in vivo and in vitro experiments. It comprises an enzymatic decarboxylation of phenylalanine to PEA catalyzed by DisA, followed by a nonenzymatic condensation to form the central imidazolium ring. This spontaneous formation of the imidazolium core was verified by means of a synthetic one-pot reaction using the respective building blocks. Six additional strains belonging to three Tenacibaculum species were able to produce discolins, and several DisA analogues were identified in various marine flavobacterial genera, suggesting the widespread presence of PEA-derived compounds in marine ecosystems.


Assuntos
Alcaloides , Anti-Infecciosos , Tenacibaculum , Alcaloides/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Ecossistema , Escherichia coli , Flavobacterium , Testes de Sensibilidade Microbiana , Fenetilaminas
7.
J Nat Prod ; 85(4): 888-898, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35239335

RESUMO

The azinothricin family comprises several cyclic hexadepsipeptides with diverse pharmacological bioactivities, including antimicrobial, antitumoral, and apoptosis induction. In this work, using a genome mining approach, a biosynthetic gene cluster encoding an azinothricin-like compound was identified from the Streptomyces sp. s120 genome sequence (pop BGC). Comparative MS analysis of extracts from the native producer and a knockout mutant led to the identification of metabolites corresponding to the pop BGC. Furthermore, regulatory elements of the BGC were identified. By overexpression of an LmbU-like transcriptional activator, the production yield of 1 and 2 was increased, enabling isolation and structure elucidation of polyoxyperuin A seco acid (1) and polyoxyperuin A (2) using high-resolution mass spectrometry and NMR spectroscopy. Compound 1 exhibited a low antibiotic effect against Micrococcus luteus, while 2 showed a strong Gram-positive antibiotic effect in a micro-broth-dilution assay.


Assuntos
Streptomyces , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Família Multigênica , Streptomyces/genética , Streptomyces/metabolismo
8.
Microbiol Spectr ; 9(3): e0153521, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937193

RESUMO

There is great need for therapeutics against multidrug-resistant, Gram-negative bacterial pathogens. Recently, darobactin A, a novel bicyclic heptapeptide that selectively kills Gram-negative bacteria by targeting the outer membrane protein BamA, was discovered. Its efficacy was proven in animal infection models of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, thus promoting darobactin A as a promising lead compound. Originally discovered from members of the nematode-symbiotic genus Photorhabdus, the biosynthetic gene cluster (BGC) encoding the synthesis of darobactin A can also be found in other members of the class Gammaproteobacteria. Therein, the precursor peptides DarB to -F, which differ in their core sequence from darobactin A, were identified in silico. Even though production of these analogs was not observed in the putative producer strains, we were able to generate them by mutasynthetic derivatization of a heterologous expression system. The analogs generated were isolated and tested for their bioactivity. The most potent compound, darobactin B, was used for cocrystallization with the target BamA, revealing a binding site identical to that of darobactin A. Despite its potency, darobactin B did not exhibit cytotoxicity, and it was slightly more active against Acinetobacter baumannii isolates than darobactin A. Furthermore, we evaluated the plasma protein binding of darobactin A and B, indicating their different pharmacokinetic properties. This is the first report on new members of this new antibiotic class, which is likely to expand to several promising therapeutic candidates. IMPORTANCE Therapeutic options to combat Gram-negative bacterial pathogens are dwindling with increasing antibiotic resistance. This study presents a proof of concept for the heterologous-expression approach to expand on the novel antibiotic class of darobactins and to generate analogs with different activities and pharmacokinetic properties. In combination with the structural data of the target BamA, this approach may contribute to structure-activity relationship (SAR) data to optimize inhibitors of this essential outer membrane protein of Gram-negative pathogens.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Acinetobacter baumannii , Animais , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/farmacologia , Linhagem Celular , Escherichia coli , Proteínas de Escherichia coli/farmacologia , Humanos , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Família Multigênica , Pseudomonas aeruginosa , Relação Estrutura-Atividade
9.
Org Biomol Chem ; 19(10): 2302-2311, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33629091

RESUMO

The cyanobacterium Fischerella ambigua is a natural producer of polychlorinated aromatic compounds, the ambigols A-E. The biosynthetic gene cluster (BGC) of these highly halogenated triphenyls has been recently identified by heterologous expression. It consists of 10 genes named ab1-10. Two of the encoded enzymes, i.e. Ab2 and Ab3, were identified by in vitro and in vivo assays as cytochrome P450 enzymes responsible for biaryl and biaryl ether formation. The key substrate for these P450 enzymes is 2,4-dichlorophenol, which in turn is derived from the precursor 3-chloro-4-hydroxybenzoic acid. Here, the biosynthetic steps leading towards 3-chloro-4-hydroxybenzoic acid were investigated by in vitro assays. Ab7, an isoenzyme of a 3-deoxy-7-phosphoheptulonate (DAHP) synthase, is involved in chorismate biosynthesis by the shikimate pathway. Chorismate in turn is further converted by a dedicated chorismate lyase (Ab5) yielding 4-hydroxybenzoic acid (4-HBA). The stand alone adenylation domain Ab6 is necessary to activate 4-HBA, which is subsequently tethered to the acyl carrier protein (ACP) Ab8. The Ab8 bound substrate is chlorinated by Ab10 in meta position yielding 3-Cl-4-HBA, which is then transfered by the condensation (C) domain to the peptidyl carrier protein and released by the thioesterase (TE) domain of Ab9. The released product is then expected to be the dedicated substrate of the halogenase Ab1 producing the monomeric ambigol building block 2,4-dichlorophenol.


Assuntos
Clorofenóis/metabolismo , Parabenos/metabolismo , 3-Desoxi-7-Fosfo-Heptulonato Sintase/metabolismo , Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Ácido Corísmico/metabolismo , Cianobactérias/enzimologia , Cianobactérias/metabolismo , Halogenação , Nucleotidiltransferases/metabolismo , Oxirredutases/metabolismo , Oxo-Ácido-Liases/metabolismo , Tioléster Hidrolases/metabolismo
10.
ACS Omega ; 5(38): 24724-24732, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015490

RESUMO

Cellular delivery of DNA vectors for the expression of therapeutic proteins is a promising approach to treat monogenic disorders or cancer. Significant efforts in a preclinical and clinical setting have been made to develop potent nonviral gene delivery systems based on lipoplexes composed of permanently cationic lipids. However, transfection efficiency and tolerability of such systems are in most cases not satisfactory. Here, we present a one-pot combinatorial method based on double-reductive amination for the synthesis of short-chain aminolipids. These lipids can be used to maximize the DNA vector delivery when combined with the cationic lipid 1,2-dioleoyl-3-trimethylammonium propane (DOTAP). We incorporated various aminolipids into such lipoplexes to complex minicircle DNA and screened these systems in a human liver-derived cell line (HuH7) for gene expression and cytotoxicity. The lead aminolipid AL-A12 showed twofold enhanced gene delivery and reduced toxicity compared to the native DOTAP:cholesterol lipoplexes. Moreover, AL-A12-containing lipoplexes enabled enhanced transgene expression in vivo in the zebrafish embryo model.

11.
Mar Drugs ; 18(4)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344725

RESUMO

Sponge-associated fungi are attractive targets for the isolation of bioactive natural products with different pharmaceutical purposes. In this investigation, 20 fungi were isolated from 10 different sponge specimens. One isolate, the fungus Penicillium citrinum strain WK-P9, showed activity against Bacillus subtilis JH642 when cultivated in malt extract medium. One new and three known citrinin derivatives were isolated from the extract of this fungus. The structures were elucidated by 1D and 2D NMR spectroscopy, as well as LC-HRMS. Their antibacterial activity against a set of common human pathogenic bacteria and fungi was tested. Compound 2 showed moderate activity against Mycobacterium smegmatis ATCC607 with a minimum inhibitory concentration (MIC) of 32 µg/mL. Compound 4 exhibited moderate growth inhibition against Bacillus subtilis JH642, B. megaterium DSM32, and M. smegmatis ATCC607 with MICs of 16, 16, and 32 µg/mL, respectively. Furthermore, weak activities of 64 µg/mL against B. subtilis DSM10 and S. aureus ATCC25923 were observed for compound 4.


Assuntos
Antibacterianos/isolamento & purificação , Citrinina/isolamento & purificação , Penicillium/química , Poríferos/microbiologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Citrinina/química , Citrinina/farmacologia , Fungos/efeitos dos fármacos , Indonésia , Testes de Sensibilidade Microbiana , Penicillium/isolamento & purificação
12.
Chembiochem ; 21(15): 2170-2177, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32182403

RESUMO

Halogenated natural products (HNPs) show a wide range of interesting biological activities. Chemistry-guided screening with a software tool dedicated to identifying halogenated compounds in HPLC-MS data indicated the presence of several uncharacterised HNPs in an extract of the cyanobacterium Fischerella ambigua (Näg.) Gomont 108b. Three new natural products, tjipanazoles K, L, and M, were isolated from this strain together with the known tjipanazoles D and I. Taking into account the structures of all tjipanazole derivatives detected in this strain, reanalysis of the tjipanazole biosynthetic gene cluster allowed us to propose a biosynthetic pathway for the tjipanazoles. As the isolated tjipanazoles show structural similarity to arcyriaflavin A, an inhibitor of the clinically relevant multidrug-transporter ABCG2 overexpressed by different cancer cell lines, the isolated compounds were tested for ABCG2 inhibitory activity. Only tjipanazole K showed appreciable transporter inhibition, whereas the compounds lacking the pyrrolo[3,4-c] ring or featuring additional chloro substituents were found to be much less active.


Assuntos
Carbazóis/química , Carbazóis/metabolismo , Cianobactérias/metabolismo , Halogenação , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Antifúngicos/química , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Carbazóis/farmacologia
13.
Mar Drugs ; 17(3)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857135

RESUMO

Sponges are a well-known bioresource for bioactive compounds. In this study, antibacterial activity-guided fractionation of the extract from an Indonesian marine Dactylospongia elegans sponge led to the discovery of four merosesquiterpenoids, namely, a new sesquiterpenoid aminoquinone nakijiquinone V (1), along with illimaquinone (2), smenospongine (3), and dyctioceratine C (4). The structure of compound 1 was elucidated by 1D and 2D NMR as well as by LC-HRESIMS data analysis. Compounds 2⁻4 showed moderate to low antimicrobial activity against Bacillus megaterium DSM32 with a minimum inhibitory concentration (MIC) of 32 µg/mL, 32 µg/mL, and 64 µg/mL, respectively. Furthermore, compounds 2 and 3 both inhibited Micrococcus luteus ATCC 4698 with a MIC of 32 µg/mL. In conclusion, the isolated merosesquiterpenoids, which are known for their cytotoxic effects, showed antibacterial activity and prompt future structure activity relationship (SAR) studies concerning the various bioactivities observed for this group of natural products.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/farmacologia , Poríferos/química , Quinonas/farmacologia , Sesquiterpenos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Bacillus megaterium/efeitos dos fármacos , Produtos Biológicos/isolamento & purificação , Indonésia , Testes de Sensibilidade Microbiana , Micrococcus luteus/efeitos dos fármacos , Estrutura Molecular , Quinonas/química , Quinonas/isolamento & purificação , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação
14.
Polymers (Basel) ; 10(1)2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30966090

RESUMO

Giant vesicles (GVs) are widely-used model systems for biological membranes. The formulation of these vesicles, however, can be problematic and artifacts, such as degraded molecules or left-over oil, may be present in the final liposomes. The rapid formulation of a high number of artifact-free vesicles of uniform size using standard laboratory equipment is, therefore, highly desirable. Here, the gentle hydration method of glass bead-supported thin lipid films has been enhanced by adding a vortexing step. This led to the formulation of a uniform population of giant vesicles. Batches of glass beads coated with different lipids can be combined to produce vesicles of hybrid lipid compositions. This method represents a stable approach to rapidly generate giant vesicles.

15.
J Control Release ; 264: 14-23, 2017 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-28803115

RESUMO

Liposomes formulated from the 1,3-diamidophospholipid Pad-PC-Pad are shear-responsive and thus promising nano-containers to specifically release a vasodilator at stenotic arteries. The recommended preclinical safety tests for therapeutic liposomes of nanometer size include the in vitro assessment of complement activation and the evaluation of the associated risk of complement activation-related pseudo-allergy (CARPA) in vivo. For this reason, we measured complement activation by Pad-PC-Pad formulations in human and porcine sera, along with the nanopharmaceutical-mediated cardiopulmonary responses in pigs. The evaluated formulations comprised of Pad-PC-Pad liposomes, with and without polyethylene glycol on the surface of the liposomes, and nitroglycerin as a model vasodilator. The nitroglycerin incorporation efficiency ranged from 25% to 50%. In human sera, liposome formulations with 20mg/mL phospholipid gave rise to complement activation, mainly via the alternative pathway, as reflected by the rises in SC5b-9 and Bb protein complex concentrations. Formulations having a factor of ten lower phospholipid content did not result in measurable complement activation. The weak complement activation induced by Pad-PC-Pad liposomal formulations was confirmed by the results obtained by performing an in vivo study in a porcine model, where hemodynamic parameters were monitored continuously. Our study suggests that, compared to FDA-approved liposomal drugs, Pad-PC-Pad exhibits less or similar risks of CARPA.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Nitroglicerina/administração & dosagem , Animais , Proteínas do Sistema Complemento/metabolismo , Humanos , Lipossomos , Masculino , Soro , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...