Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138280

RESUMO

A current trend within photo-dynamic therapy (PDT) is the development of molecular systems targeting hypoxic tumors. Thus, type I PDT sensitizers could here overcome traditional type II molecular systems that rely on the photo-initiated production of toxic singlet oxygen. Here, we investigate the cell localization properties and toxicity of two polymeric anthracene-based fluorescent probes (neutral Ant-PHEA and cationic Ant-PIm). The cell death and DNA damage of Chinese hamster ovary cancer cells (CHO-K1) were characterized as combining PDT, cell survival studies (MTT-assay), and comet assay. Confocal microscopy was utilized on samples incubated together with either DRAQ5, Lyso Tracker Red, or Mito Tracker Deep Red in order to map the localization of the sensitizer into the nucleus and other cell compartments. While Ant-PHEA did not cause significant damage to the cell, Ant-PIm showed increased cell death upon illumination, at the cost of a significant dark toxicity. Both anthracene chromophores localized in cell compartments of the cytosol. Ant-PIm showed a markedly improved selectivity toward lysosomes and mitochondria, two important biological compartments for the cell's survival. None of the two anthracene chromophores showed singlet oxygen formation upon excitation in solvents such as deuterium oxide or methanol. Conclusively, the significant photo-induced cell death that could be observed with Ant-PIm suggests a possible type I PDT mechanism rather than the usual type II mechanism.


Assuntos
Fármacos Fotossensibilizantes/química , Polímeros/química , Animais , Antracenos/química , Linhagem Celular Tumoral , Cricetulus , Feminino , Neoplasias Ovarianas , Fotoquimioterapia , Oxigênio Singlete/química
2.
J Phys Chem Lett ; 8(23): 5915-5920, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29148817

RESUMO

The implication of guanine-rich DNA sequences in biologically important roles such as telomerase dysfunction and the regulation of gene expression has prompted the search for structure-specific G-quadruplex agents for targeted diagnostic and therapeutic applications. Herein, we report on a near-infrared (NIR) two-photon poly(cationic) anthracene-based macromolecule able to selectively target G-quadruplexes (G4s) over genomic double-stranded DNA. In particular, the striking changes in its linear and third-order nonlinear optical properties, combined with the emergence of a strong induced electronic circular dichroism (ECD) signal upon binding to canonical and noncanonical DNA secondary structures allowed for a highly specific detection of several different G4s. Furthermore, through a detailed computational analysis we bring compelling evidence that our probe intercalation within G4s is a thermodynamically favored event, and we fully rationalize the spectroscopic evolution resulting from this complexation event by providing a reasonable explanation regarding the origin of the peculiar ECD effect that accompanies it.


Assuntos
DNA/química , Quadruplex G , Substâncias Macromoleculares , Sequência de Bases , Dicroísmo Circular , Corantes Fluorescentes/química , Guanina/química , Conformação de Ácido Nucleico , Fótons , Termodinâmica
3.
ACS Omega ; 2(9): 5715-5725, 2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023750

RESUMO

The binding interaction of a biocompatible water-soluble polycationic two-photon fluorophore (Ant-PIm) toward human serum albumin (HSA) was thoroughly investigated under simulated physiological conditions using a combination of steady-state, time-resolved, and two-photon excited fluorescence techniques. The emission properties of both Ant-PIm and the fluorescent amino acid residues in HSA undergo remarkable changes upon complexation allowing the thermodynamic profile associated with Ant-PIm-HSA complexation to be accurately established. The marked increase in Ant-PIm fluorescence intensity and quantum yield in the proteinous environment seems to be the outcome of the attenuation of radiationless decay pathways resulting from motional restriction imposed on the fluorophore. Fluorescence resonance energy transfer and site-marker competitive experiments provide conclusive evidence that the binding of Ant-PIm preferentially occurs within the subdomain IIA. The pronounced hypsochromic effect and increased fluorescence enhancement upon association with HSA, compared to that of bovine serum albumin (BSA) and other biological interferents, makes the polymeric Ant-PIm probe a valuable sensing agent in rather complex biological environments, allowing facile discrimination between the closely related HSA and BSA. Furthermore, the strong two-photon absorption (TPA) with a maximum located at 820 nm along with a TPA cross section σ2 > 800 GM, and the marked changes in the position and intensity of the band upon complexation definitely make Ant-PIm a promising probe for two-photon excited fluorescence-based discrimination of HSA from BSA.

4.
Biomacromolecules ; 17(11): 3609-3618, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27696875

RESUMO

We report the synthesis, spectroscopy, and the DNA binding properties of a biocompatible, water-soluble, polycationic two-photon absorbing anthracenyl derivative (Ant-PIm) specifically designed for biorelated applications. Detailed insights into the Ant-PIm-DNA binding interaction are provided by using several spectroscopic approaches, including UV-vis absorption, circular dichroism (CD), Fourier-transform infrared spectroscopy (FTIR), steady-state, and time-resolved fluorescence techniques. Absorption and fluorescence quantitative data analysis show a strong Ant-PIm-duplex interaction with binding constants of Kf = 4.7 ± 0.2 × 105 M-1, 7.1 ± 0.3 × 105 M-1, and 1.0 ± 0.1 × 106 M-1 at 298, 304, and 310 K, respectively. Spectral changes observed upon DNA binding provide evidence for a complex formation with off-on fluorescence pattern, which can be related to two consecutive binding equilibria. Results of DNA binders displacement and iodide quenching experimental assays unambiguously point to the groove binding mode of Ant-PIm to the DNA-helicate. Thermodynamic and chemical denaturation studies suggest that long-range interactions of hydrophobic nature regulate the association of Ant-PIm with the biopolymer. The ionic strength dependence of the binding constant shows that electrostatic component has an important contribution to the overall Gibbs free energy. FTIR and CD data provide evidence of partial modification of the B-DNA secondary structure, while the increase in the melting temperature clearly indicates the enhancement of the thermal stability of the duplex. Furthermore, the two-photon absorption cross section spectrum determined using the two-photon excited fluorescence (TPEF) technique shows a strong 2PA maximum at 820 nm with a σ2 > 800 GM, which emphasizes the advantageous combination of biological and optical properties possessed by this positively charged bioprobe.


Assuntos
Antracenos/química , DNA/química , Corantes Fluorescentes/química , Cátions/química , Dicroísmo Circular , Interações Hidrofóbicas e Hidrofílicas , Concentração Osmolar , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Chemphyschem ; 17(14): 2128-36, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-26990918

RESUMO

Three boron diketonate chromophores with extended π-conjugated backbone were prepared and their spectroscopic features were investigated through a combined theoretical/experimental study. It was shown that these complexes, which undergo very large electronic reorganization upon photoexcitation, combine large two-photon absorption cross section with an emission energy and quantum efficiency in solution that is strongly dependent on solvent polarity. The strong positive influence of boron complexation on the magnitude of the two-photon absorption was clearly established, and it was shown that the two-photon absorption properties were dominated by the quadrupolar term. For one of the synthesized compounds, intense one- and two-photon-induced solid-state emission (fluorescence quantum yield of 0.65 with maximum wavelength of 610 nm) was obtained as a result of antiparallel J-aggregate crystal packing.

6.
Phys Chem Chem Phys ; 17(45): 30318-27, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26506886

RESUMO

We have studied the interaction of a polymeric water soluble anthracenyl derivative () with salmon testes DNA. The results from UV-Vis, fluorescence, Fourier transform infrared (FT-IR) and circular dichroism spectroscopies indicate that the groove binding process regulates the interaction between and DNA. The binding constants, calculated by absorption spectroscopy at 298, 304 and 310 K, were equal to 3.2 × 10(5) M(-1), 4.7 × 10(5) M(-1), and 6.6 × 10(5) M(-1) respectively, proving a relatively high affinity of for salmon testes DNA. Results of Hoechst 33258 displacement assays strongly support the groove binding mode of to DNA. The association stoichiometry of the :DNA adduct was found to be 1 for every 5 base pairs. FT-IR spectra, recorded at different /DNA molar ratios, indicate the involvement of the phosphate groups and adenine and thymine DNA bases in the association process. Thermodynamic results suggest that hydrophobic forces regulate the binding of with DNA without excluding some extent of involvement of van der Waals forces and hydrogen bonding arising due to surface binding between the hydrophilic polymeric arms of the ligand and the functional groups positioned on the edge of the groove. The resulting composite biomaterial could constitute a valuable candidate for future biological and/or photonic applications.


Assuntos
Antracenos/química , Materiais Biocompatíveis/química , DNA/química , Polímeros/química , Testículo/química , Animais , Dicroísmo Circular , Masculino , Salmão , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
7.
Chemistry ; 19(12): 3921-31, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23436718

RESUMO

Cyclic peptides with a linear tail (CPLT) have been successfully used to model two zinc fingers (ZFs) adopting the treble-clef- and loosened zinc-ribbon folds. In this article, we examine the factors that may influence the design of such ZF models: mutations in the sequence, size of the cycle, and size of the tail. For this purpose, several peptides derived from the CPLT-based models of the treble-clef- and loosened zinc-ribbon ZF were synthesized and studied. CPLT-based models appear to be robust toward mutations, accommodate various cycle sizes, and are sensible to the size of the linking region of the tail located between the cycle and the coordinating amino acids. Based on these criteria, we describe the design of a new CPLT-based model for the zinc-ribbon ZFs, LZR , and compare it to a linear analogue, LZR(lin) . The model complex Zn⋅LZR is able to fold correctly around the metal ion contrary to Zn⋅LZR(lin) , suggesting that CPLT-based models are more likely to yield structurally meaningful models of ZF sites than linear peptide models. Finally, we draw some rules that could allow the design of new CPLT-based metallopeptides with a controlled fold.


Assuntos
Peptídeos Cíclicos/química , Dedos de Zinco , Sequência de Aminoácidos , Espectroscopia de Ressonância Magnética , Metaloproteínas/química , Modelos Moleculares , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...