Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 11: 590, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612537

RESUMO

Background: Myocardial infarction (MI) is caused by occlusion of the coronary artery and induces ischemia in the myocardium and eventually a massive loss in cardiomyocytes. Studies have shown many factors or treatments that can affect the healing and remodeling of the heart upon infarction, leading to better cardiac performance and clinical outcome. Previously, miR-132/212 has been shown to play an important role in arteriogenesis in a mouse model of hindlimb ischemia and in the regulation of cardiac contractility in hypertrophic cardiomyopathy in mice. In this study, we explored the role of miR-132/212 during ischemia in a murine MI model. Methods and Results: miR-132/212 knockout mice show enhanced cardiac contractile function at baseline compared to wild-type controls, as assessed by echocardiography. One day after induction of MI by permanent occlusion, miR-132/212 knockout mice display similar levels of cardiac damage as wild-type controls, as demonstrated by infarction size quantification and LDH release, although a trend toward more cardiomyocyte cell death was observed in the knockout mice as shown by TUNEL staining. Four weeks after MI, miR-132/212 knockout mice show no differences in terms of cardiac function, expression of cardiac stress markers, and fibrotic remodeling, although vascularization was reduced. In line with these in vivo observation, overexpression of miR-132 or miR-212 in neonatal rat cardiomyocyte suppress hypoxia induced cardiomyocyte cell death. Conclusion: Although we previously observed a role in collateral formation and myocardial contractility, the absence of miR-132/212 did not affect the overall myocardial performance upon a permanent occlusion of the coronary artery. This suggests an interplay of different roles of this miR-132/212 before and during MI, including an inhibitory effect on cell death and angiogenesis, and a positive effect on cardiac contractility and autophagic response. Thus, spatial or tissue specific manipulation of this microRNA family may be essential to fully understand the roles and to develop interventions to reduce infarct size.

2.
Biotechnol Rep (Amst) ; 18: e00255, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29876304

RESUMO

To understand and assess the roles of miRNAs, visualization of the expression patterns of specific miRNAs is needed at the cellular level in a wide variety of different tissue types. Although miRNA in situ hybridization techniques have been greatly improved in recent years, they remain difficult to routinely perform due to the complexity of the procedure. In addition, as it is crucial to define which tissues or cells are expressing a particular miRNA in order to elucidate the biological function of the miRNA, incorporation of additional stainings for different cellular markers is necessary. Here, we describe a robust and flexible multicolor miRNA in situ hybridization (MMISH) technique for paraffin embedded sections. We show that the miRNA in situ protocol is sensitive and highly specific and can successfully be combined with both immunohistochemical and immunofluorescent stainings.

3.
Adv Healthc Mater ; 5(19): 2555-2565, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27570124

RESUMO

To date, cellular transplantation therapy has not yet fulfilled its high expectations for cardiac repair. A major limiting factor is lack of long-term engraftment of the transplanted cells. Interestingly, transplanted cells can positively affect their environment via secreted paracrine factors, among which are extracellular vesicles, including exosomes: small bi-lipid-layered vesicles containing proteins, mRNAs, and miRNAs. An exosome-based therapy will therefore relay a plethora of effects, without some of the limiting factors of cell therapy. Since cardiomyocyte progenitor cells (CMPC) and mesenchymal stem cells (MSC) induce vessel formation and are frequently investigated for cardiac-related therapies, the pro-angiogenic properties of CMPC and MSC-derived exosome-like vesicles are investigated. Both cell types secrete exosome-like vesicles, which are efficiently taken up by endothelial cells. Endothelial cell migration and vessel formation are stimulated by these exosomes in in vitro models, mediated via ERK/Akt-signaling. Additionally, these exosomes stimulated blood vessel formation into matrigel plugs. Analysis of pro-angiogenic factors revealed high levels of extracellular matrix metalloproteinase inducer (EMMPRIN). Knockdown of EMMPRIN on CMPCs leads to a diminished pro-angiogenic effect, both in vitro and in vivo. Therefore, CMPC and MSC exosomes have powerful pro-angiogenic effects, and this effect is largely mediated via the presence of EMMPRIN on exosomes.


Assuntos
Basigina/metabolismo , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Neovascularização Patológica/metabolismo , Células-Tronco/metabolismo , Animais , Movimento Celular/fisiologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
4.
J Cardiovasc Transl Res ; 9(4): 291-301, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27383837

RESUMO

Plasma-circulating microRNAs have been implicated as novel early biomarkers for myocardial infarction (MI) due to their high specificity for cardiac injury. For swift clinical translation of this potential biomarker, it is important to understand their temporal and spatial characteristics upon MI. Therefore, we studied the temporal release, potential source, and transportation of circulating miRNAs in different models of ischemia reperfusion (I/R) injury. We demonstrated that extracellular vesicles are released from the ischemic myocardium upon I/R injury. Moreover, we provided evidence that cardiac and muscle-specific miRNAs are transported by extracellular vesicles and are rapidly detectable in plasma. Since these vesicles are enriched for the released miRNAs and their detection precedes traditional damage markers, they hold great potential as specific early biomarkers for MI.


Assuntos
Vesículas Extracelulares/metabolismo , MicroRNAs/genética , Infarto do Miocárdio/genética , Traumatismo por Reperfusão Miocárdica/genética , Animais , Modelos Animais de Doenças , Feminino , Marcadores Genéticos , Preparação de Coração Isolado , Masculino , Camundongos Endogâmicos C57BL , MicroRNAs/sangue , Infarto do Miocárdio/sangue , Infarto do Miocárdio/diagnóstico , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/diagnóstico , Sus scrofa , Fatores de Tempo
5.
Biomaterials ; 33(6): 1782-90, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22136718

RESUMO

Tissue engineering is emerging as a potential therapeutic approach to overcome limitations of cell therapy, like cell retention and survival, as well as to mechanically support the ventricular wall and thereby prevent dilation. Tissue printing technology (TP) offers the possibility to deliver, in a defined and organized manner, scaffolding materials and living cells. The aim of our study was to evaluate the combination of TP, human cardiac-derived cardiomyocyte progenitor cells (hCMPCs) and biomaterials to obtain a construct with cardiogenic potential for in vitro use or in vivo application. With this approach, we were able to generate an in vitro tissue with homogenous distribution of cells in the scaffold. Cell viability was determined after printing and showed that 92% and 89% of cells were viable at 1 and 7 days of culturing, respectively. Moreover, we demonstrated that printed hCMPCs retained their commitment for the cardiac lineage. In particular, we showed that 3D culture enhanced gene expression of the early cardiac transcription factors Nkx2.5, Gata-4 and Mef-2c as well as the sarcomeric protein TroponinT. Printed cells were also able to migrate from the alginate matrix and colonize a matrigel layer, thereby forming tubular-like structures. This indicated that printing can be used for defined cell delivery, while retaining functional properties.


Assuntos
Miocárdio/metabolismo , Engenharia Tecidual/métodos , Alginatos/química , Materiais Biocompatíveis/química , Biotecnologia/métodos , Movimento Celular , Proliferação de Células , Sobrevivência Celular , DNA Complementar/metabolismo , Ácido Glucurônico/química , Coração/fisiologia , Ácidos Hexurônicos/química , Humanos , Microscopia de Fluorescência/métodos , Miócitos Cardíacos/citologia , Oligopeptídeos/química , Células-Tronco/citologia , Fatores de Tempo , Fatores de Transcrição/metabolismo , Troponina T/química
6.
J Cell Mol Med ; 15(7): 1474-82, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20550618

RESUMO

To improve regeneration of the injured myocardium, cardiomyocyte progenitor cells (CMPCs) have been put forward as a potential cell source for transplantation therapy. Although cell transplantation therapy displayed promising results, many issues need to be addressed before fully appreciating their impact. One of the hurdles is poor graft-cell survival upon injection, thereby limiting potential beneficial effects. Here, we attempt to improve CMPCs survival by increasing microRNA-155 (miR-155) levels, potentially to improve engraftment upon transplantation. Using quantitative PCR, we observed a 4-fold increase of miR-155 when CMPCs were exposed to hydrogen-peroxide stimulation. Flow cytometric analysis of cell viability, apoptosis and necrosis showed that necrosis is the main cause of cell death. Overexpressing miR-155 in CMPCs revealed that miR-155 attenuated necrotic cell death by 40 ± 2.3%via targeting receptor interacting protein 1 (RIP1). In addition, inhibiting RIP1, either by pre-incubating the cells with a RIP1 specific inhibitor, Necrostatin-1 or siRNA mediated knockdown, reduced necrosis by 38 ± 2.5% and 33 ± 1.9%, respectively. Interestingly, analysing gene expression using a PCR-array showed that increased miR-155 levels did not change cell survival and apoptotic related gene expression. By targeting RIP1, miR-155 repressed necrotic cell death of CMPCs, independent of activation of Akt pro-survival pathway. MiR-155 provides the opportunity to block necrosis, a conventionally thought non-regulated process, and might be a potential novel approach to improve cell engraftment for cell therapy.


Assuntos
Morte Celular/fisiologia , MicroRNAs/metabolismo , Miócitos Cardíacos/fisiologia , Necrose/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Células-Tronco/fisiologia , Sobrevivência Celular , Células Cultivadas , Humanos , Imidazóis/metabolismo , Indóis/metabolismo , MicroRNAs/genética , Miócitos Cardíacos/citologia , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/fisiologia , Células-Tronco/citologia
7.
J Cell Mol Med ; 14(4): 861-70, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20219011

RESUMO

In the past years, cardiovascular progenitor cells have been isolated from the human heart and characterized. Up to date, no studies have been reported in which the developmental potential of foetal and adult cardiovascular progenitors was tested simultaneously. However, intrinsic differences will likely affect interpretations regarding progenitor cell potential and application for regenerative medicine. Here we report a direct comparison between human foetal and adult heart-derived cardiomyocyte progenitor cells (CMPCs). We show that foetal and adult CMPCs have distinct preferences to differentiate into mesodermal lineages. Under pro-angiogenic conditions, foetal CMPCs form more endothelial but less smooth muscle cells than adult CMPCs. Foetal CMPCs can also develop towards adipocytes, whereas neither foetal nor adult CMPCs show significant osteogenic differentiation. Interestingly, although both cell types differentiate into heart muscle cells, adult CMPCs give rise to electrophysiologically more mature cardiomyocytes than foetal CMPCs. Taken together, foetal CMPCs are suitable for molecular cell biology and developmental studies. The potential of adult CMPCs to form mature cardiomyocytes and smooth muscle cells may be essential for cardiac repair after transplantation into the injured heart.


Assuntos
Células-Tronco Adultas/citologia , Feto/citologia , Miócitos Cardíacos/citologia , Adipogenia , Adulto , Proliferação de Células , Humanos , Potenciais da Membrana/fisiologia , Neovascularização Fisiológica , Osteogênese
8.
Arterioscler Thromb Vasc Biol ; 30(4): 859-68, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20081117

RESUMO

OBJECTIVE: To improve regeneration of the injured myocardium, it is necessary to enhance the intrinsic capacity of the heart to regenerate itself and/or replace the damaged tissue by cell transplantation. Cardiomyocyte progenitor cells (CMPCs) are a promising cell population, easily expanded and efficiently differentiated into beating cardiomyocytes. Recently, several studies have demonstrated that microRNAs (miRNAs) are important for stem cell maintenance and differentiation via translational repression. We hypothesize that miRNAs are also involved in proliferation/differentiation of the human CMPCs in vitro. METHODS AND RESULTS: Human fetal CMPCs were isolated, cultured, and efficiently differentiated into beating cardiomyocytes. miRNA expression profiling demonstrated that muscle-specific miR-1 and miR-499 were highly upregulated in differentiated cells. Transient transfection of miR-1 and -499 in CMPC reduced proliferation rate by 25% and 15%, respectively, and enhanced differentiation into cardiomyocytes in human CMPCs and embryonic stem cells, likely via the repression of histone deacetylase 4 or Sox6. Histone deacetylase 4 and Sox6 protein levels were reduced, and small interference RNA (siRNA)-mediated knockdown of Sox6 strongly induced myogenic differentiation. CONCLUSIONS: miRNAs regulate the proliferation of human CMPC and their differentiation into cardiomyocytes. By modulating miR-1 and -499 expression levels, human CMPC function can be altered and differentiation directed, thereby enhancing cardiomyogenic differentiation.


Assuntos
Diferenciação Celular/genética , Proliferação de Células , Células-Tronco Fetais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Miócitos Cardíacos/metabolismo , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Idade Gestacional , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Interferência de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição SOXD/genética , Fatores de Transcrição SOXD/metabolismo , Transcrição Gênica , Transfecção , Regulação para Cima
9.
J Mol Cell Cardiol ; 48(1): 254-60, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19460390

RESUMO

Cardiomyocyte progenitor cells (CMPCs) can be isolated from the human heart and differentiated into cardiomyocytes in vitro. A comprehensive assessment of their electrical phenotype upon differentiation is essential to predict potential future applications of this cell source. CMPCs isolated from human fetal heart were differentiated in vitro and examined using immunohistochemistry, Western blotting, RT-PCR, voltage clamp and current clamp techniques. Differentiated cultures presented up to 95% alpha-actinin positive cardiomyocytes. Adherens junction and desmosomal proteins beta-catenin, N-cadherin, desmin and plakophilin2 were upregulated. Expression levels of cardiac connexins were not affected by differentiation, however Cx43 phosphorylation was increased upon differentiation, accompanied by translocation of connexins to the cell border. RT-PCR analysis demonstrated upregulation of all major cardiac ion channel constituents during differentiation. Patch clamp experiments showed that cardiomyocytes had a stable resting membrane potential of -73.4+/-1.8 mV. Infusion of 1 mM BaCl(2) resulted in depolarization to -59.9+/-2.8 mV, indicating I(K1) channel activity. Subsequent voltage clamp experiments confirmed presence of near mature I(Na), I(Ca,L) and I(K1) current densities. Infusion of the I(Kr) blocker Almokalant caused prolongation of the action potential by 40%. Differentiated monolayers were not spontaneously contracting in the absence of serum, but responded to field stimulation, displaying adult ventricular-like action potentials. Human fetal CMPC-derived cardiomyocytes have a homogenous and rather mature electrical phenotype that benefits to in vitro physiology and pharmacology. In the context of cardiac repair, their properties may translate into a reduced pro-arrhythmic risk and enhanced electrical integration upon transplantation.


Assuntos
Eletrofisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Células-Tronco/citologia , Antiarrítmicos/farmacologia , Diferenciação Celular/fisiologia , Células Cultivadas , Coração/efeitos dos fármacos , Coração/fisiologia , Humanos , Canais Iônicos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Propanolaminas/farmacologia
10.
Stem Cell Res ; 1(2): 138-49, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19383394

RESUMO

The adult mammalian heart has limited regenerative capacity and was generally considered to contain no dividing cells. Recently, however, a resident population of progenitor cells has been identified, which could represent a new source of cardiomyocytes. Here, we describe the efficient isolation and propagation of human cardiomyocyte progenitor cells (hCMPCs) from fetal heart and patient biopsies. Establishment of hCMPC cultures was remarkably reproducible, with over 70% of adult atrial biopsies resulting in robustly expanding cell populations. Following the addition of transforming growth factor beta, almost all cells differentiated into spontaneously beating myocytes with characteristic cross striations. hCMPC-derived cardiomyocytes showed gap-junctional communication and action potentials of maturing cardiomyocytes. These are the first cells isolated from human heart that proliferate and form functional cardiomyocytes without requiring coculture with neonatal myocytes. Their scalability and homogeneity are unique and provide an excellent basis for developing physiological, pharmacological, and toxicological assays on human heart cells in vitro.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Miócitos Cardíacos/citologia , Células-Tronco/citologia , Fator de Crescimento Transformador beta1/farmacologia , Técnicas de Cultura de Células , Proliferação de Células , Separação Celular , Humanos
11.
Mol Biol Cell ; 16(2): 731-41, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15548590

RESUMO

Griscelli syndrome type 2 (GS2) is a genetic disorder in which patients exhibit life-threatening defects of cytotoxic T lymphocytes (CTLs) whose lytic granules fail to dock on the plasma membrane and therefore do not release their contents. The disease is caused by the absence of functional rab27a, but how rab27a controls secretion of lytic granule contents remains elusive. Mutations in Munc13-4 cause familial hemophagocytic lymphohistiocytosis subtype 3 (FHL3), a disease phenotypically related to GS2. We show that Munc13-4 is a direct partner of rab27a. The two proteins are highly expressed in CTLs and mast cells where they colocalize on secretory lysosomes. The region comprising the Munc13 homology domains is essential for the localization of Munc13-4 to secretory lysosomes. The GS2 mutant rab27aW73G strongly reduced binding to Munc13-4, whereas the FHL3 mutant Munc13-4Delta608-611 failed to bind rab27a. Overexpression of Munc13-4 enhanced degranulation of secretory lysosomes in mast cells, showing that it has a positive regulatory role in secretory lysosome fusion. We suggest that the secretion defects seen in GS2 and FHL3 have a common origin, and we propose that the rab27a/Munc13-4 complex is an essential regulator of secretory granule fusion with the plasma membrane in hematopoietic cells. Mutations in either of the two genes prevent formation of this complex and abolish secretion.


Assuntos
Lisossomos/metabolismo , Mastócitos/citologia , Mastócitos/metabolismo , Proteínas/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Western Blotting , Linhagem Celular , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Imuno-Histoquímica , Células Jurkat , Células K562 , Mastócitos/ultraestrutura , Microscopia Imunoeletrônica , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Proteínas/ultraestrutura , Ratos , Proteínas Recombinantes/metabolismo , Radioisótopos de Enxofre/metabolismo , Linfócitos T Citotóxicos/metabolismo , Transfecção , Células U937 , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab27 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...