Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834389

RESUMO

Replication protein A (RPA) is the major single-stranded DNA (ssDNA) binding protein that is essential for DNA replication and processing of DNA double-strand breaks (DSBs) by homology-directed repair pathways. Recently, small molecule inhibitors have been developed targeting the RPA70 subunit and preventing RPA interactions with ssDNA and various DNA repair proteins. The rationale of this development is the potential utility of such compounds as cancer therapeutics, owing to their ability to inhibit DNA replication that sustains tumor growth. Among these compounds, (1Z)-1-[(2-hydroxyanilino) methylidene] naphthalen-2-one (HAMNO) has been more extensively studied and its efficacy against tumor growth was shown to arise from the associated DNA replication stress. Here, we study the effects of HAMNO on cells exposed to ionizing radiation (IR), focusing on the effects on the DNA damage response and the processing of DSBs and explore its potential as a radiosensitizer. We show that HAMNO by itself slows down the progression of cells through the cell cycle by dramatically decreasing DNA synthesis. Notably, HAMNO also attenuates the progression of G2-phase cells into mitosis by a mechanism that remains to be elucidated. Furthermore, HAMNO increases the fraction of chromatin-bound RPA in S-phase but not in G2-phase cells and suppresses DSB repair by homologous recombination. Despite these marked effects on the cell cycle and the DNA damage response, radiosensitization could neither be detected in exponentially growing cultures, nor in cultures enriched in G2-phase cells. Our results complement existing data on RPA inhibitors, specifically HAMNO, and suggest that their antitumor activity by replication stress induction may not extend to radiosensitization. However, it may render cells more vulnerable to other forms of DNA damaging agents through synthetically lethal interactions, which requires further investigation.


Assuntos
Neoplasias , Proteína de Replicação A , Humanos , Proteína de Replicação A/metabolismo , Ciclo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Reparo do DNA , Dano ao DNA , DNA , Mitose , DNA de Cadeia Simples
2.
Cells ; 11(10)2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35626708

RESUMO

The transcription factor hypoxia-inducible factor (HIF) is the main oxygen sensor which regulates adaptation to cellular hypoxia. The aim of this study was to establish cultured murine hepatocyte derived cells (mHDC) as an in vitro model and to analyze the role of HIF-1α in apoptosis induction, DNA damage repair and sensitivity to ionizing radiation (IR). We have crossed C57/BL6 mice that bear loxP sites flanking exon 2 of Hif1a with mice which carry tamoxifen-inducible global Cre expression. From the offspring, we have established transduced hepatocyte cultures which are permanently HIF-1α deficient after tamoxifen treatment. We demonstrated that the cells produce albumin, acetylcholine esterase, and the cytokeratins 8 and 18 which functionally characterizes them as hepatocytes. In moderate hypoxia, HIF-1α deficiency increased IR-induced apoptosis and significantly reduced the surviving fraction of mHDC as compared to HIF-1α expressing cells in colony formation assays. Furthermore, HIF-1α knockout cells displayed increased IR-induced DNA damage as demonstrated by increased generation and persistence of γH2AX foci. HIF-1α deficient cells showed delayed DNA repair after IR in hypoxia in neutral comet assays which may indicate that non-homologous end joining (NHEJ) repair capacity was affected. Overall, our data suggest that HIF-1α inactivation increases radiation sensitivity of mHDC cells.


Assuntos
Hepatócitos , Hipóxia , Animais , Hepatócitos/metabolismo , Hipóxia/metabolismo , Integrases , Camundongos , Radiação Ionizante , Tamoxifeno
3.
Sci Rep ; 11(1): 7199, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785835

RESUMO

The disulfide isomerase ERp57, originally found in the endoplasmic reticulum, is located in multiple cellular compartments, participates in diverse cell functions and interacts with a huge network of binding partners. It was recently suggested as an attractive new target for cancer therapy due to its critical role in tumor cell proliferation. Since a major bottleneck in cancer treatment is the occurrence of hypoxic areas in solid tumors, the role of ERp57 in cell growth was tested under oxygen depletion in the colorectal cancer cell line HCT116. We observed a severe growth inhibition when ERp57 was knocked down in hypoxia (1% O2) as a consequence of downregulated c-Myc, PLK1, PDPK1 (PDK1) and AKT (PKB). Further, irradiation experiments revealed also a radiosensitizing effect of ERp57 depletion under oxygen deprivation. Compared to ERp57, we do not favour PDPK1 as a suitable pharmaceutical target as its efficient knockdown/chemical inhibition did not show an inhibitory effect on proliferation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias do Colo/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Hipóxia Tumoral , Apoptose , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/radioterapia , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Oxigênio/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Transdução de Sinais , Quinase 1 Polo-Like
4.
Cell Death Dis ; 12(1): 82, 2021 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-33441543

RESUMO

Hypoxia-induced resistance of tumor cells to therapeutic treatment is an unresolved limitation due to poor vascular accessibility and protective cell adaptations provided by a network, including PERK, NRF2, and HIF signaling. All three pathways have been shown to influence each other, but a detailed picture remains elusive. To explore this crosstalk in the context of tumor therapy, we generated human cancer cell lines of pancreatic and lung origin carrying an inducible shRNA against NRF2 and PERK. We report that PERK-related phosphorylation of NRF2 is only critical in Keap1 wildtype cells to escape its degradation, but shows no direct effect on nuclear import or transcriptional activity of NRF2. We could further show that NRF2 is paramount for proliferation, ROS elimination, and radioprotection under constant hypoxia (1% O2), but is dispensable under normoxic conditions or after reoxygenation. Depletion of NRF2 does not affect apoptosis, cell cycle progression and proliferation factors AKT and c-Myc, but eliminates cellular HIF-1α signaling. Co-IP experiments revealed a protein interaction between NRF2 and HIF-1α and strongly suggest NRF2 as one of the cellular key factor for the HIF pathway. Together these data provide new insights on the complex role of the PERK-NRF2-HIF-axis for cancer growth.


Assuntos
Hipóxia Celular/genética , Neoplasias Pulmonares/genética , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias Pancreáticas/genética , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pancreáticas/patologia , Transdução de Sinais , Transfecção
5.
Sci Rep ; 10(1): 15299, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943707

RESUMO

Upon ER stress cells activate the unfolded protein response through PERK, IRE1 and ATF6. Remarkable effort has been made to delineate the downstream signaling of these three ER stress sensors after activation, but upstream regulation at the ER luminal site still remains mostly undefined. Here we report that the thiol oxidoreductase PDI is mandatory for activation of the PERK pathway in HEK293T as well as in human pancreatic, lung and colon cancer cells. Under ER stress, depletion of PDI selectively abrogated eIF2α phosphorylation, induction of ATF4, CHOP and even BiP. Furthermore, we could demonstrate that PDI prevented degradation of activated PERK by the 26S proteasome and therefore contributes to maintained PERK signaling. As a result of decreased PERK activity, PDI depleted cells showed an increased vulnerability to ER stress induced by chemicals or ionizing radiation in 2D as well as in 3D culture models. We conclude that PDI is an obligatory regulator of the PERK pathway with future therapy implications.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Oxirredutases/metabolismo , Transdução de Sinais/fisiologia , eIF-2 Quinase/metabolismo , Células A549 , Apoptose/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Retículo Endoplasmático/metabolismo , Células HCT116 , Células HEK293 , Humanos , Neoplasias/metabolismo , Fosforilação/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo
6.
Am J Physiol Cell Physiol ; 318(4): C719-C731, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31967857

RESUMO

Carotid body (CB) type I cells sense the blood Po2 and generate a nervous signal for stimulating ventilation and circulation when blood oxygen levels decline. Three oxygen-sensing enzyme complexes may be used for this purpose: 1) mitochondrial electron transport chain metabolism, 2) heme oxygenase 2 (HO-2)-generating CO, and/or 3) an NAD(P)H oxidase (NOX). We hypothesize that intracellular redox changes are the link between the sensor and nervous signals. To test this hypothesis type I cell autofluorescence of flavoproteins (Fp) and NAD(P)H within the mouse CB ex vivo was recorded as Fp/(Fp+NAD(P)H) redox ratio. CB type I cell redox ratio transiently declined with the onset of hypoxia. Upon reoxygenation, CB type I cells showed a significantly increased redox ratio. As a control organ, the non-oxygen-sensing sympathetic superior cervical ganglion (SCG) showed a continuously reduced redox ratio upon hypoxia. CN-, diphenyleneiodonium, or reactive oxygen species influenced chemoreceptor discharge (CND) with subsequent loss of O2 sensitivity and inhibited hypoxic Fp reduction only in the CB but not in SCG Fp, indicating a specific role of Fp in the oxygen-sensing process. Hypoxia-induced changes in CB type I cell redox ratio affected peptidyl prolyl isomerase Pin1, which is believed to colocalize with the NADPH oxidase subunit p47phox in the cell membrane to trigger the opening of potassium channels. We postulate that hypoxia-induced changes in the Fp-mediated redox ratio of the CB regulate the Pin1/p47phox tandem to alter type I cell potassium channels and therewith CND.


Assuntos
Corpo Carotídeo/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Oxigênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Células Quimiorreceptoras/metabolismo , Flavoproteínas/metabolismo , Hipóxia/metabolismo , Pulmão/metabolismo , Camundongos , Mitocôndrias/metabolismo , Canais de Potássio/metabolismo
7.
Exp Cell Res ; 374(1): 29-37, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412717

RESUMO

Autophagy is commonly described as a cell survival mechanism and has been implicated in chemo- and radioresistance of cancer cells. Whether ionizing radiation induced autophagy triggers tumor cell survival or cell death still remains unclear. In this study the autophagy related proteins Beclin1 and ATG7 were tested as potential targets to sensitize colorectal carcinoma cells to ionizing radiation under normoxic, hypoxic and starvation conditions. Colony formation, apoptosis and cell cycle analysis revealed that knockdown of Beclin1 or ATG7 does not enhance radiosensitivity in HCT-116 cells. Furthermore, ATG7 knockdown led to an increased survival fraction under oxygen and glutamine starvation, indicating that ionizing radiation indeed induces autophagy which, however, leads to cell death finally. These results highlight that inhibition of autophagic pathways does not generally increase therapy success but may also lead to an unfavorable outcome especially under amino acid and oxygen restriction.


Assuntos
Apoptose/efeitos da radiação , Autofagia/efeitos da radiação , Neoplasias Colorretais/patologia , Radiação Ionizante , Proteína 7 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Glutamina/deficiência , Humanos , Oxigênio/farmacologia
8.
BMC Cancer ; 18(1): 1190, 2018 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-30497423

RESUMO

BACKGROUND: The nudix family member enzyme MutT homologue-1 (MTH1) hydrolyses the oxidized nucleotides 8-oxo-dGTP and 2-hydroxy-dATP and thus prevents the incorporation of damaged nucleotides into nuclear and mitochondrial DNA. Therefore MTH1 was proposed to protect cancer cells from oxidative DNA lesions and subsequent cell death. We investigated whether the bona fide MTH1 inhibitor TH588 affects responses of cultured colorectal tumor cells to ionizing radiation (IR) in normoxia and in moderate or severe hypoxia. METHODS: TH588 was tested in cell viability and survival assays (tetrazolium dye (MTT), propidium iodide staining, caspase-3 activity, and colony formation assays (CFA)) in colorectal carcinoma cells (HCT116 and SW480) in combination with IR in normoxia and in hypoxia. Additionally, MTH1 was targeted by lentiviral shRNA expression. Human umbilical vein endothelial cells (HUVEC) were assessed in MTT assays. RESULTS: In all cell lines tested, TH588 dose-dependently impaired cell survival. In CFAs, TH588 and IR effects on carcinoma cells were additive in normoxia and in hypoxia. Using 3 different shRNAs, the lentiviral approach was detrimental to SW480, but not to HCT116. CONCLUSIONS: TH588 has cytotoxic effects on transformed and untransformed cells and synergizes with IR in normoxia and in hypoxia. TH588 toxicity is not fully explained by MTH1 inhibition as HCT116 were unaffected by lentiviral suppression of MTH1 expression. TH588 should be explored further because it has radiosensitizing effects in hypoxia.


Assuntos
Neoplasias Colorretais/metabolismo , Enzimas Reparadoras do DNA/antagonistas & inibidores , Hipóxia/metabolismo , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Pirimidinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Radiação Ionizante , Radiossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/radioterapia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Estresse Oxidativo/efeitos dos fármacos
9.
Cell Death Dis ; 8(8): e2986, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28796255

RESUMO

Endoplasmic reticulum (ER) stress leads to activation of the unfolded protein response (UPR) that results in transient suppression of protein translation to allow recovery but leads to cell death when stress cannot be resolved. Central to initiation of the UPR is the activation of the ER transmembrane kinase protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). Here we report that the thiol oxidoreductase ERp57 and protein disulfide isomerase-A1 (PDI), which belong to the same family of luminal ER oxidoreductases, have strikingly opposing roles in the regulation of PERK function. In HCT116 colon carcinoma cells, lentiviral depletion of ERp57 resulted in oxidation of PDI and activation of PERK, whereas depletion or chemical inhibition of PDI reduced PERK signaling and sensitized the cancer cells to hypoxia and ER stress. We conclude that oxidized PDI acts as a PERK activator, whereas ERp57 keeps PDI in a reduced state in the absence of ER stress. Thus, our study defines a new interface between metabolic redox signaling and PERK-dependent activation of the UPR and has the potential to influence future cancer therapies that target PERK signaling.


Assuntos
Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , eIF-2 Quinase/metabolismo , Fator 6 Ativador da Transcrição/genética , Fator 6 Ativador da Transcrição/metabolismo , Apoptose/genética , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Células HCT116 , Humanos , Oxirredução , Pró-Colágeno-Prolina Dioxigenase/genética , Isomerases de Dissulfetos de Proteínas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/genética , eIF-2 Quinase/genética
10.
Antioxid Redox Signal ; 25(2): 89-107, 2016 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-27021152

RESUMO

AIMS: Tumor hypoxia is a major biological factor causing poor patient outcome. Evidence is increasing that improved protection against reactive oxygen species (ROS) participates in therapy resistance of chronically hypoxic cancer cells. We aimed at characterizing the relevance of improved ROS defense for radiation resistance of cancer cells with tolerance to cycling anoxia/re-oxygenation stress ("anoxia-tolerant") and at designing rational treatment strategies for overcoming the resulting therapy resistance by targeting the underlying mechanisms identified in an in vitro model. RESULTS: We demonstrate that chronic exposure of NCH-H460 lung adenocarcinoma, DU145 prostate cancer, and T98G glioblastoma cells to cycling anoxia/re-oxygenation stress induced upregulation of the aspartate-aminotransferase glutamic-oxaloacetic transaminase (GOT1), particularly in RAS-driven anoxia-tolerant NCI-H460 cells. Altered glutamine utilization of the anoxia-tolerant cancer cells contributed to the observed decrease in cellular ROS levels, the increase in cellular glutathione levels, and improved cell survival on ROS-inducing treatments, including exposure to ionizing radiation. Importantly, targeting glutamine-dependent antioxidant capacity or glutathione metabolism allowed us to hit anoxia-tolerant cancer cells and to overcome their increased resistance to radiation-induced cell death. Targeting glutathione metabolism by Piperlongumine also improved the radiation response of anoxia-tolerant NCI-H460 cells in vivo. INNOVATION: Improved antioxidant capacity downstream of up-regulated GOT1-expression is a characteristic of anoxia-tolerant cancer cells and is predictive for a specific vulnerability to inhibition of glutamine utilization or glutathione metabolism, respectively. CONCLUSION: Unraveling the molecular alterations underlying improved ROS defense of anoxia-tolerant cancer cells allows the design of rational strategies for overcoming radiation resistance caused by tumor cell heterogeneity in hypoxic tumors. Antioxid. Redox Signal. 25, 89-107.


Assuntos
Glutamina/metabolismo , Glutationa/metabolismo , Hipóxia/metabolismo , Adaptação Biológica/genética , Adaptação Biológica/efeitos da radiação , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferase Citoplasmática/genética , Aspartato Aminotransferase Citoplasmática/metabolismo , Morte Celular , Hipóxia Celular , Linhagem Celular Tumoral , Dioxolanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Hipóxia/genética , Camundongos , Oxirredução , Estresse Oxidativo/genética , Estresse Oxidativo/efeitos da radiação , Tolerância a Radiação/genética , Radiação Ionizante , Radiossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncotarget ; 7(16): 21428-40, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-26870892

RESUMO

Biomarkers for prognosis in radiotherapy-treated breast cancer patients are urgently needed and important to stratify patients for adjuvant therapies. Recently, a role of the receptor of hyaluronan-mediated motility (RHAMM) has been suggested for tumor progression. Our aim was (i) to investigate the prognostic value of RHAMM in breast cancer and (ii) to unravel its potential function in the radiosusceptibility of breast cancer cells. We demonstrate that RHAMM mRNA expression in breast cancer biopsies is inversely correlated with tumor grade and overall survival. Radiosusceptibility in vitro was evaluated by sub-G1 analysis (apoptosis) and determination of the proliferation rate. The potential role of RHAMM was addressed by short interfering RNAs against RHAMM and its splice variants. High expression of RHAMMv1/v2 in p53 wild type cells (MCF-7) induced cellular apoptosis in response to ionizing radiation. In comparison, in p53 mutated cells (MDA-MB-231) RHAMMv1/v2 was expressed sparsely resulting in resistance towards irradiation induced apoptosis. Proliferation capacity was not altered by ionizing radiation in both cell lines. Importantly, pharmacological inhibition of the major ligand of RHAMM, hyaluronan, sensitized both cell lines towards radiation induced cell death. Based on the present data, we conclude that the detection of RHAMM splice variants in correlation with the p53 mutation status could help to predict the susceptibility of breast cancer cells to radiotherapy. Additionally, our studies raise the possibility that the response to radiotherapy in selected cohorts may be improved by pharmaceutical strategies against RHAMM and its ligand hyaluronan.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Proteínas da Matriz Extracelular/genética , Receptores de Hialuronatos/genética , Splicing de RNA , Western Blotting , Neoplasias da Mama/metabolismo , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Células MCF-7 , Prognóstico , Interferência de RNA , Tolerância a Radiação/genética , Radiação Ionizante , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sobrevida
12.
Oncotarget ; 6(36): 39247-61, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26513173

RESUMO

Rapidly growing tumor cells must synthesize proteins at a high rate and therefore depend on an efficient folding and quality control system for nascent secretory proteins in the endoplasmic reticulum (ER). The ER resident thiol oxidoreductase ERp57 plays an important role in disulfide bond formation. Lentiviral, doxycycline-inducible ERp57 knockdown was combined with irradiation and treatment with chemotherapeutic agents. The knockdown of ERp57 significantly enhanced the apoptotic response to anticancer treatment in HCT116 colon cancer cells via a p53-dependent mechanism. Instead of a direct interaction with p53, depletion of ERp57 induced cell death via a selective activation of the PERK branch of the Unfolded Protein Response (UPR). In contrast, apoptosis was reduced in MDA-MB-231 breast cancer cells harboring mutant p53. Nevertheless, we observed a strong reduction of proliferation in response to ERp57 knockdown in both cell lines regardless of the p53 status. Depletion of ERp57 reduced the phosphorylation activity of the mTOR-complex1 (mTORC1) as demonstrated by reduction of p70S6K phosphorylation. Our data demonstrate that ERp57 is a promising target for anticancer therapy due to synergistic p53-dependent induction of apoptosis and p53-independent inhibition of proliferation.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/terapia , Neoplasias do Colo/enzimologia , Neoplasias do Colo/terapia , Isomerases de Dissulfetos de Proteínas/deficiência , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/radioterapia , Retículo Endoplasmático , Técnicas de Silenciamento de Genes , Células HCT116 , Células HEK293 , Humanos , Isomerases de Dissulfetos de Proteínas/genética , Radiação Ionizante , Resposta a Proteínas não Dobradas
13.
Adv Exp Med Biol ; 860: 55-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26303467

RESUMO

Reactive oxygen species (ROS) generated by the NADPH oxidase have been proposed to play an important role in the carotid body (CB) oxygen sensing process (Cross et al. 1990). Up to now it remains unclear whether hypoxia causes an increase or decrease of CB ROS levels. We transfected CBs with the ROS sensitive HSP-FRET construct and subsequently measured the intracellular redox state by means of Förster resonance energy transfer (FRET) microscopy. In a previous study we found both increasing and decreasing ROS levels under hypoxic conditions. The transition from decreasing to increasing ROS levels coincided with the change of the caging system from ambient environment caging (AEC) to individually ventilated caging (IVC) (Bernardini A, Brockmeier U, Metzen E, Berchner-Pfannschmidt U, Harde E, Acker-Palmer A, Papkovsky D, Acker H, Fandrey J, Type I cell ROS kinetics under hypoxia in the intact mouse carotid body ex vivo: a FRET based study. Am J Physiol Cell Physiol. doi: 10.1152/ajpcell.00370.2013 , 2014). In this work we analyze hypoxia induced ROS reaction of animals from an IVC system that had been exposed to AEC conditions for 5 days. The results further support the hypothesis of an important impact of the caging system on CB ROS reaction.


Assuntos
Corpo Carotídeo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Transferência Ressonante de Energia de Fluorescência , Potenciais da Membrana
14.
J Cell Sci ; 126(Pt 12): 2629-40, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23606740

RESUMO

The asparaginyl hydroxylase factor inhibiting HIF-1 (FIH-1) is an important suppressor of hypoxia-inducible factor (HIF) activity. In addition to HIF-α, FIH-1 was previously shown to hydroxylate other substrates within a highly conserved protein interaction domain, termed the ankyrin repeat domain (ARD). However, to date, the biological role of FIH-1-dependent ARD hydroxylation could not be clarified for any ARD-containing substrate. The apoptosis-stimulating p53-binding protein (ASPP) family members were initially identified as highly conserved regulators of the tumour suppressor p53. In addition, ASPP2 was shown to be important for the regulation of cell polarity through interaction with partitioning defective 3 homolog (Par-3). Using mass spectrometry we identified ASPP2 as a new substrate of FIH-1 but inhibitory ASPP (iASPP) was not hydroxylated. We demonstrated that ASPP2 asparagine 986 (N986) is a single hydroxylation site located within the ARD. ASPP2 protein levels and stability were not affected by depletion or inhibition of FIH-1. However, FIH-1 depletion did lead to impaired binding of Par-3 to ASPP2 while the interaction between ASPP2 and p53, apoptosis and proliferation of the cancer cells were not affected. Depletion of FIH-1 and incubation with the hydroxylase inhibitor dimethyloxalylglycine (DMOG) resulted in relocation of ASPP2 from cell-cell contacts to the cytosol. Our data thus demonstrate that protein interactions of ARD-containing substrates can be modified by FIH-1-dependent hydroxylation. The large cellular pool of ARD-containing proteins suggests that FIH-1 can affect a broad range of cellular functions and signalling pathways under certain conditions, for example, in response to severe hypoxia.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Oxigenases de Função Mista/metabolismo , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Adesão Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Processos de Crescimento Celular/fisiologia , Hipóxia Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Citosol/metabolismo , Citosol/fisiologia , Células HCT116 , Células HEK293 , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Mapas de Interação de Proteínas , Estrutura Terciária de Proteína/fisiologia , Alinhamento de Sequência , Transdução de Sinais
15.
PLoS One ; 7(10): e47161, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071744

RESUMO

Combination treatment with endostar, a novel modified endostatin, and cytotoxic chemotherapies showed a survival benefit in Chinese clinical trials. However, the exact mechanism for this synergism remains unclear. In this study, we report for the first time that the chemokine receptor CXCR4 and the hypoxia-inducible transcription factors (HIF)-1α and HIF-2α are involved in these synergistic antitumor effects in human colorectal cancer SW1116 cells in vitro when endostar treatment is combined with the cytotoxic drug oxaliplatin. Under normoxia, we demonstrate that endostar and oxaliplatin treatments synergize to inhibit SW1116 cell proliferation, Matrigel adhesion and invasion by reduction of CXCR4 expression. Consistently, these antitumor abilities of endostar and oxaliplatin were markedly reduced by silencing of CXCR4 in SW1116 cells. Under low oxygen conditions (hypoxia, 1% oxygen), enhanced proliferation of SW1116 cells exposed to oxaliplatin was observed due to the emergence of drug resistance. Strikingly, endostar overcame oxaliplatin-resistance, most likely as a consequence of reduced HIF-2α and CXCR4 levels. CXCR4, is only dependent on HIF-2α, which promotes more aggressive phenotype and more significant for oxaliplatin resistance in SW1116 cells. Our data not only provide clues to aid understanding of the mechanism of the synergism of endostar and chemotherapy under either normoxia or hypoxia, but also suggests a new strategy of combination endostar and chemotherapy treatments which might potentiate therapeutic efficacies and/or counteract chemotherapy resistance.


Assuntos
Antineoplásicos/farmacologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Neoplasias Colorretais/patologia , Endostatinas/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Compostos Organoplatínicos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Antineoplásicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Adesão Celular/efeitos dos fármacos , Hipóxia Celular , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Colágeno , Combinação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Endostatinas/química , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Laminina , Invasividade Neoplásica/patologia , Compostos Organoplatínicos/química , Oxaliplatina , Proteoglicanas , Receptores CXCR4/metabolismo , Receptores CXCR4/fisiologia , Proteínas Recombinantes , Transdução de Sinais/efeitos dos fármacos
16.
Mol Cancer Res ; 10(8): 1021-31, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22767589

RESUMO

The SDF-1/CXCR4 axis has been implicated in breast cancer metastasis. In contrast to its well-established role in organ-specific homing and colonization of tumor cells, the involvement in intravasation, especially in a hypoxic environment, is still poorly understood. Initially, we detected both, the chemokine SDF-1 and its receptor CXCR4 in microvessels in invasive ductal cancer samples. To elucidate the role of the SDF-1/CXCR4 axis in vascular endothelium for tumor intravasation, we evaluated the effects of CXCR4 activation in human umbilical vein and dermal microvascular endothelial cells (HUVEC and HDMEC) and in cultured mammary carcinoma cells (MDA MB231, and MCF7). We observed an upregulation of SDF-1 and CXCR4 in HUVECs in hypoxia, which led to proliferation, migration, and tube formation. Hypoxia induced adhesion of tumor cells to endothelial cells and stimulated transendothelial migration. The effects of hypoxia were dependent on the activity of the transcription factor hypoxia-inducible factor. Adhesion to and migration through a HUVEC monolayer were significantly reduced by lentiviral inhibition of CXCR4 in breast carcinoma cells or treatment of endothelial cells with an anti-SDF-1 neutralizing antibody. These data show that the interaction of SDF-1 secreted by ECs with tumor cell CXCR4 is sufficient to stimulate transendothelial migration of the tumor cells. Our results suggest that the SDF-1/CXCR4 axis is important in angiogenesis and tumor cell intravasation. Because both proteins were readily identifiable in a significant fraction of human breast cancer samples by immunohistochemistry, CXCR4 may constitute a molecular target for therapy when both, SDF-1, and CXCR4 are expressed.


Assuntos
Neoplasias da Mama , Quimiocina CXCL12 , Regulação Neoplásica da Expressão Gênica , Invasividade Neoplásica/patologia , Receptores CXCR4 , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Quimiocina CXCL12/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipóxia , Neovascularização Fisiológica , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Transdução de Sinais
17.
Cancer ; 118(4): 960-72, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21792862

RESUMO

BACKGROUND: Pancreatic cancer is 1 of the most common and poorly treated tumors. In search of new therapeutic approaches, the oxygen sensors prolyl hydroxylases (PHD) are potential targets. PHD2 is considered the key oxygen sensor-regulating hypoxia-inducible factor (HIF). Currently, there is conflicting evidence regarding the exact role of PHD2 in tumorigenesis. The objective of this study was to investigate the role of PHD2 in pancreatic cancer growth and progression. METHODS: PHD2 expression was analyzed by quantitative real-time polymerase chain reaction analysis and immunohistochemistry in human tissue specimens and cell lines. Knockdown of PHD2 was done by using short-interfering RNAs (siRNAs) specific against PHD2, and PHD2 overexpression was achieved by stable combinational DNA transfection. In vivo, an orthotopic murine model was used. Angiogenic cytokines were assessed with enzyme-linked immunosorbent assays, and invasion was studied with Matrigel assays. RESULTS: PHD2 expression was not altered substantially in cancer tissues and their metastases. Lymph node-negative tissues had higher levels of PHD2 than lymph node-positive tissues. PHD2 was hypoxia-inducible in pancreatic cancer cell lines and regulated cell growth through cyclin D1 down-regulation samples with PHD2 suppression and through p21 up-regulation in samples with of PHD2 overexpression. In vivo, PHD2 caused tumor growth retardation and reduced tumor invasion by inhibiting angiogenesis. This observation was caused by the suppression of angiogenic cytokines and tumor invasion. CONCLUSIONS: The current results indicated that PHD2 plays an important role in pancreatic tumorigenesis. In summary, the authors concluded that PHD2 may function as a tumor suppressor gene in pancreatic cancer and, thus, may define a potential target for the treatment of pancreatic cancer.


Assuntos
Proliferação de Células , Neovascularização Patológica/fisiopatologia , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/fisiopatologia , Pró-Colágeno-Prolina Dioxigenase/fisiologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hipóxia/fisiopatologia , Prolina Dioxigenases do Fator Induzível por Hipóxia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica/fisiopatologia , Neoplasias Pancreáticas/irrigação sanguínea , Estudos Retrospectivos , Transplante Heterólogo , Adulto Jovem
18.
Cell Physiol Biochem ; 28(5): 805-12, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22178933

RESUMO

BACKGROUND: Radiotherapy is one of the most widely used treatments for cancer. The benefit of radiation is known to be negatively affected by tumor hypoxia and the expression of hypoxia-inducible factors (HIF), respectively. HIF-1α/ ß and HIF-2α/ ß are transcriptional activators of oxygen-regulated genes. The aim of the study was to examine cell type-specific effects of HIF-1α and -2α knockdown or oxygen-independent HIF-stabilisation on radiosensitivity. METHODS: Herein, we treated four different wildtype and HIF-1α- or HIF-2α-deficient human cancer cell lines, cultured under normoxic or hypoxic conditions, with ionising radiation in doses from 2 to 6 Gy and examined clonogenic survival. Furthermore, the cells were partly preincubated with a HIF-stabiliser (di-tert-butyroyl-oxymethyl-2,4-pyridine-dicarboxylate, (t)Bu-2,4-PDC). RESULTS: The results show that both hypoxia exposure and treatment with (t)Bu-2,4-PDC increased the radioresistance of human cancer cells. The HIF-mediated decrease of radioresponsiveness induced by the chemical stabiliser emerged to be as strong as the one caused by hypoxia. Clonogenic survival assays furthermore revealed that HIF-1 expression enhanced resistance to radiation, whereas knocking-down HIF-1 increased the sensitivity to radiation under normoxic as well as under hypoxic conditions. CONCLUSION: These data extend previous observations of HIF-1α and broaden the view by showing HIF-2α inverse correlation between HIF expression and prognosis for the outcome of radiotherapy.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Raios gama , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Tolerância a Radiação/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Hipóxia Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias/radioterapia , Ácidos Pipecólicos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo
19.
Exp Transl Stroke Med ; 3: 12, 2011 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22029974

RESUMO

BACKGROUND: ATP-binding cassette transporters at the blood-brain barrier are actively regulated upon ischemic stroke in a way that impedes the access of pharmacological compounds to the brain tissue. The luminal endothelial transporter ABCB1 was recently shown to be increased, whereas the abluminal transporter ABCC1 was decreased on ischemic brain capillaries. In vitro studies using epithelial cells suggested that ABCB1 is regulated during hypoxia in a hypoxia-inducible factor (HIF)-1α-dependent way. METHODS: In order to investigate whether hypoxia might be responsible for the expression changes of ABCB1 and ABCC1 in the ischemic brain, the immortalised human brain microvascular endothelial cell line hCMEC/D3 was exposed to hypoxia (1%) or anoxia (0%). Cell lysates were analysed by Western blot to detect the protein expression of ABCB1, ABCC1, HIF-1α and HIF-2α. RESULTS: During hypoxia, an accumulation of HIF-1α and HIF-2α was noticed in hCMEC/D3 cells that followed different time kinetics. Both HIF-1α and HIF-2α abundance increased within 4 h of hypoxia. HIF-1α levels decreased to below detection levels within 16 h of hypoxia, whereas HIF-2α remained elevated even after 48 h. No changes of ABCB1 and ABCC1 expression were detected, neither on the mRNA nor protein level. CONCLUSION: Our data suggests that other factors than hypoxia may be responsible for the expression changes of ATP-binding cassette transporters in the ischemic brain.

20.
PLoS One ; 6(4): e19151, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21559462

RESUMO

The protein "amplified in osteosarcoma-9" (OS-9) has been shown previously to interact with the prolyl hydroxylases PHD2 and PHD3. These enzymes initiate oxygen-dependent degradation of the α-subunit of hypoxia-inducible factor (HIF), a transcription factor that adapts cells to insufficient oxygen supply (hypoxia). A new model has been proposed where OS-9 triggers PHD dependent degradation of HIF-α. It was the aim of our study to define the molecular mode of action of OS-9 in the regulation of PHD and HIF activity. Although initial co-immunoprecipitation experiments confirmed physical interaction between OS-9 and PHD2, neither overexpression nor lentiviral inhibition of OS-9 expression affected HIF regulation. Subcellular localization experiments revealed a distinct reticular staining pattern for OS-9 while PHD2 was mainly localized in the cytoplasm. Further cell fractionation experiments and glycosylation tests indicated that OS-9 is a luminal ER protein. In vivo protein interaction analysis by fluorescence resonance energy transfer (FRET) showed no significant physical interaction of overexpressed PHD2-CFP and OS-9-YFP. We conclude that OS-9 plays no direct functional role in HIF degradation since physical interaction of OS-9 with oxygen sensing HIF prolyl hydroxylases cannot occur in vivo due to their different subcellular localization.


Assuntos
Retículo Endoplasmático/metabolismo , Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lectinas/metabolismo , Proteínas de Neoplasias/metabolismo , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Citoplasma/metabolismo , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Glicosilação , Células HeLa , Humanos , Hipóxia , Modelos Biológicos , Oxigênio/química , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...