Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Chem C Nanomater Interfaces ; 126(35): 14801-14812, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36110496

RESUMO

Materials that are capable of adsorbing and desorbing gases near ambient conditions are highly sought after for many applications in gas storage and separations. While the physisorption of typical gases to high surface area covalent organic frameworks (COFs) occurs through relatively weak intermolecular forces, the tunability of framework materials makes them promising candidates for tailoring gas sorption enthalpies. The incorporation of open Cu(I) sites into framework materials is a proven strategy to increase gas uptake closer to ambient conditions for gases that are capable of π-back-bonding with Cu. Here, we report the synthesis of a Cu(I)-loaded COF with subnanometer pores and a three-dimensional network morphology, namely Cu(I)-COF-301. This study focused on the sorption mechanisms of hydrogen, ethylene, and carbon monoxide with this material under ultrahigh vacuum using temperature-programmed desorption and Kissinger analyses of variable ramp rate measurements. All three gases desorb near or above room temperature under these conditions, with activation energies of desorption (E des) calculated as approximately 29, 57, and 68 kJ/mol, for hydrogen, ethylene, and carbon monoxide, respectively. Despite these strong Cu(I)-gas interactions, this work demonstrated the ability to desorb each gas on-demand below its normal desorption temperature upon irradiation with ultraviolet (UV) light. While thermal imaging experiments indicate that bulk photothermal heating of the COF accounts for some of the photodriven desorption, density functional theory calculations reveal that binding enthalpies are systematically lowered in the COF-hydrogen matrix excited state initiated by UV irradiation, further contributing to gas desorption. This work represents a step toward the development of more practical ambient temperature storage and efficient regeneration of sorbents for applications with hydrogen and π-accepting gases through the use of external photostimuli.

2.
Nano Lett ; 21(21): 9131-9137, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34676756

RESUMO

Exploiting the high surface-area-to-volume ratio of nanomaterials to store energy in the form of electrochemical alloys is an exceptionally promising route for achieving high-rate energy storage and delivery. Nanoscale palladium hydride is an excellent model system for understanding how nanoscale-specific properties affect the absorption and desorption of energy carrying equivalents. Hydrogen absorption and desorption in shape-controlled Pd nanostructures does not occur uniformly across the entire nanoparticle surface. Instead, hydrogen absorption and desorption proceed selectively through high-activity sites at the corners and edges. Such a mechanism hinders the hydrogen absorption rates and greatly reduces the benefit of nanoscaling the dimensions of the palladium. To solve this, we modify the surface of palladium with an ultrathin platinum shell. This modification nearly removes the barrier for hydrogen absorption (89 kJ/mol without a Pt shell and 1.8 kJ/mol with a Pt shell) and enables diffusion through the entire Pd/Pt surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA