Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(6): e0303422, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38843131

RESUMO

Describing the structural complexity of seabeds is of primary importance for a number of geomorphological, hydrodynamical and ecological issues. Aiming to bring a decisive insight on the long-term development of a unified view, the present study reports on a comparative multi-site analysis of high resolution topography surveys in rough nearshore environments. The nine study sites have been selected to cover a wide variety of topographical features, including rocky and coral seabeds. The topography data has been processed to separate roughness and bathymetry-related terrain features, allowing to perform a comprehensive spectral and statistical analysis of each site. A series of roughness metrics have been tested to identify the most relevant estimators of the bottom roughness at each site. The spectral analysis highlights the systematic presence of a self-affine range of variable extension and spectral slope. The standard deviation of the seabed elevation varies from 0.04 to 0.77 m. The statistical and multi-scale analysis performed on the whole set of roughness metrics allows to identify connection between metrics and therefore to propose a reduced set of relevant roughness estimators. A more general emphasis is placed on the need to properly define a unified framework when reconstructing roughness statistics and bathymetry from fine seabed topographical data.


Assuntos
Antozoários , Antozoários/anatomia & histologia , Animais , Sedimentos Geológicos , Ecossistema
2.
Sci Rep ; 13(1): 17459, 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37838785

RESUMO

Temperature is an essential oceanographic variable (EOV) that still today remains coarsely resolved below the surface and near the seafloor. Here, we gather evidence to confirm that Distributed Acoustic Sensing (DAS) technology can convert tens of kilometer-long seafloor fiber-optic telecommunication cables into dense arrays of temperature anomaly sensors having millikelvin (mK) sensitivity, thus allowing to monitor oceanic processes such as internal waves and upwelling with unprecedented detail. Notably, we report high-resolution observations of highly coherent near-inertial and super-inertial internal waves in the NW Mediterranean sea, offshore of Toulon, France, having spatial extents of a few kilometers and producing maximum thermal anomalies of more than 5 K at maximum absolute rates of more than 1 K/h. We validate our observations with in-situ oceanographic sensors and an alternative optical fiber sensing technology. Currently, DAS only provides temperature changes estimates, however practical solutions are outlined to obtain continuous absolute temperature measurements with DAS at the seafloor. Our observations grant key advantages to DAS over established temperature sensors, showing its transformative potential for the description of seafloor temperature fluctuations over an extended range of spatial and temporal scales, as well as for the understanding of the evolution of the ocean in a broad sense (e.g. physical and ecological). Diverse ocean-oriented fields could benefit from the potential applications of this fast-developing technology.

3.
Mar Environ Res ; 66 Suppl: S39-48, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18996583

RESUMO

This paper presents a review of sediment dispersal processes in the Strait of Georgia, based on marine geological studies. Sediment from the Fraser River is dispersed around the Strait through a variety of transport pathways. Most sand and coarser silt fractions settle out and are deposited within a few 100 m of the channel mouths. Both channelled and non-channelled gravity flows probably transport sediment downslope and onto the basin floor. Asymmetric tidal currents force a predominantly northward sediment drift, resulting in a reworked slope off Roberts Bank and a finer-grained depositional slope off Sturgeon Bank. Far-field sediment accumulation is controlled by local morphology and sediment dynamics. Multibeam mapping and seismic profiling reveal that some parts of the basin floor are characterized by bottom sediment reworking and erosion. Given the complexities of sediment dispersal and seafloor reworking, generalizations about sediment dispersal paths and sedimentation rates are difficult. Future understanding will be advanced by the cabled observatory, VENUS, which will enable near real-time monitoring of key processes.


Assuntos
Movimentos da Água , Colúmbia Britânica , Sedimentos Geológicos/análise , Oceanos e Mares
4.
Proc Natl Acad Sci U S A ; 104(22): 9218-23, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17517668

RESUMO

In 332 B.C., Alexander the Great constructed an approximately 1,000-m-long causeway to seize the offshore island of Tyre. The logistics behind this engineering feat have long troubled archaeologists. Using the Holocene sedimentary record, we demonstrate that Alexander's engineers cleverly exploited a shallow proto-tombolo, or sublittoral sand spit, to breach the offshore city's defensive impregnability. We elucidate a three-phase geomorphological model for the spit's evolution. Settled since the Bronze Age, the area's geological record manifests a long history of natural and anthropogenic forcings. (i) Leeward of the island breakwater, the maximum flooding surface (e.g., drowning of the subaerial land surfaces by seawater) is dated approximately 8000 B.P. Fine-grained sediments and brackish and marine-lagoonal faunas translate shallow, low-energy water bodies at this time. Shelter was afforded by Tyre's elongated sandstone reefs, which acted as a 6-km natural breakwater. (ii) By 6000 B.P., sea-level rise had reduced the dimensions of the island from 6 to 4 km. The leeward wave shadow generated by this island, allied with high sediment supply after 3000 B.P., culminated in a natural wave-dominated proto-tombolo within 1-2 m of mean sea level by the time of Alexander the Great (4th century B.C.). (iii) After 332 B.C., construction of Alexander's causeway entrained a complete anthropogenic metamorphosis of the Tyrian coastal system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...