Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 137(7): 923-928, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33025005

RESUMO

In hematopoietic cell transplantation (HCT), permissive HLA-DPB1 mismatches between patients and their unrelated donors are associated with improved outcomes compared with nonpermissive mismatches, but the underlying mechanism is incompletely understood. Here, we used mass spectrometry, T-cell receptor-ß (TCRß) deep sequencing, and cellular in vitro models of alloreactivity to interrogate the HLA-DP immunopeptidome and its role in alloreactive T-cell responses. We find that permissive HLA-DPB1 mismatches display significantly higher peptide repertoire overlaps compared with their nonpermissive counterparts, resulting in lower frequency and diversity of alloreactive TCRß clonotypes in healthy individuals and transplanted patients. Permissiveness can be reversed by the absence of the peptide editor HLA-DM or the presence of its antagonist, HLA-DO, through significant broadening of the peptide repertoire. Our data establish the degree of immunopeptidome divergence between donor and recipient as the mechanistic basis for the clinically relevant permissive HLA-DPB1 mismatches in HCT and show that permissiveness is dependent on HLA-DM-mediated peptide editing. Its key role for harnessing T-cell alloreactivity to HLA-DP highlights HLA-DM as a potential novel target for cellular and immunotherapy of leukemia.


Assuntos
Epitopos/imunologia , Antígenos HLA-D/imunologia , Cadeias beta de HLA-DP/imunologia , Histocompatibilidade/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Aloenxertos , Antígenos de Diferenciação de Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Endossomos/metabolismo , Epitopos/metabolismo , Rearranjo Gênico da Cadeia alfa dos Receptores de Antígenos dos Linfócitos T , Rearranjo Gênico da Cadeia beta dos Receptores de Antígenos dos Linfócitos T , Células HeLa , Transplante de Células-Tronco Hematopoéticas , Sequenciamento de Nucleotídeos em Larga Escala , Histocompatibilidade/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Espectrometria de Massas , Chaperonas Moleculares , Peptídeos/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Doadores não Relacionados
2.
Front Immunol ; 9: 2236, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30344521

RESUMO

HLA expression levels have been suggested to be genetically controlled by single nucleotide polymorphisms (SNP) in the untranslated regions (UTR), and expression variants have been associated with the outcome of chronic viral infection and hematopoietic stem cell transplantation (HSCT). In particular, the 3'UTR rs9277534-G/A SNP in HLA-DPB1 has been associated with graft-versus-host-disease after HSCT (Expression model); however its relevance in different immune cells and its mode of action have not been systematically addressed. In addition, there is a strong though not complete overlap between the rs9277534-G/A SNP and structural HLA-DPB1 T cell epitope (TCE) groups which have also been associated with HSCT outcome (TCE Structural model). Here we confirm and extend previous findings of significantly higher HLA-DPB1 expression in B cell lines, unstimulated primary B cells, and monocytes homozygous for rs9277534-G compared to those homozygous for rs9277534-A. However, these differences were abrogated by interferon-γ stimulation or differentiation into dendritic cells. We identify at least seven 3'UTR rs9277534-G/A haplotypes differing by a total of 37 SNP, also characterized by linkage to length variants of a short tandem repeat (STR) in intron 2 and TCE group assignment. 3'UTR mapping did not show any significant differences in post-transcriptional regulation assessed by luciferase assays between two representative rs9277534-G/A haplotypes for any of eight overlapping fragments. Moreover, no evidence for alternative splicing associated with the intron 2 STR was obtained by RT-PCR. In an exemplary cohort of 379 HLA-DPB1 mismatched donor-recipient pairs, risk prediction by the Expression model and the Structural TCE model was 36.7% concordant, with the majority of discordances due to non-applicability of the Expression model. HLA-DPB1 from different TCE groups expressed in the absence of the 3'UTR at similar levels by transfected HeLa cells elicited significantly different mean alloreactive CD4+ T-cell responses, as assessed by CD137 upregulation assays in 178 independent cultures. Taken together, our data provide new insights into the cell type-specific and mechanistic basis of the association between the rs9277534-G/A SNP and HLA-DPB1 expression, and show that, despite partial overlap between both models in HSCT risk-prediction, differential alloreactivity determined by the TCE structural model occurs independently from HLA-DPB1 differential expression.


Assuntos
Regiões 3' não Traduzidas/imunologia , Regulação da Expressão Gênica/imunologia , Doença Enxerto-Hospedeiro/imunologia , Cadeias beta de HLA-DP/imunologia , Transplante de Células-Tronco Hematopoéticas/métodos , Polimorfismo de Nucleotídeo Único/imunologia , Regiões 3' não Traduzidas/genética , Alelos , Linfócitos B/imunologia , Linfócitos B/metabolismo , Células Cultivadas , Epitopos de Linfócito T/química , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , Frequência do Gene , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/genética , Cadeias beta de HLA-DP/genética , Haplótipos , Células HeLa , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo
3.
Front Immunol ; 9: 280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520276

RESUMO

T cell alloreactivity is mediated by a self-human leukocyte antigen (HLA)-restricted T cell receptor (TCR) repertoire able to recognize both structurally similar and dissimilar allogeneic HLA molecules (i.e., differing by a single or several amino acids in their peptide-binding groove). We hypothesized that thymic selection on self-HLA molecules could have an indirect impact on the size and diversity of the alloreactive response. To test this possibility, we used TCR Vß immunophenotyping and immunosequencing technology in a model of alloreactivity between self-HLA selected T cells and allogeneic HLA-DPB1 (DPB1) differing from self-DPB1*04:02 by a single (DPB1*02:01) or several (DPB1*09:01) amino acids in the peptide-binding groove. CD4+ T cells from three different self-DPB1*04:01,*04:02 individuals were stimulated with HeLa cells stably transduced with the relevant peptide processing machinery, co-stimulatory molecules, and HLA-DP. Flow cytometric quantification of the DPB1-specific T cell response measured as upregulation of the activation marker CD137 revealed significantly lower levels of alloreactivity against DPB1*02:01 compared with DPB1*09:01 (mean CD4+CD137+ frequency 35.2 ± 9.9 vs. 61.5 ± 7.7%, respectively, p < 0.0001). These quantitative differences were, however, not reflected by differences in the breadth of the alloreactive response at the Vß level, with both alloantigens eliciting specific responses from all TCR-Vß specificities tested by flow cytometry, albeit with higher levels of reactivity from most Vß specificities against DPB1*09:01. In line with these observations, TCRB-CDR3 immunosequencing showed no significant differences in mean clonality of sorted CD137+CD4+ cells alloreactive against DPB1*02:01 or DPB1*09:01 [0.39 (0.36-0.45) and 0.39 (0.30-0.46), respectively], or in the cumulative frequencies of the 10 most frequent responding clones (55-67 and 58-62%, respectively). Most of the clones alloreactive against DPB1*02:01 (68.3%) or DPB1*09:01 (75.3%) were characterized by low-abundance (i.e., they were not appreciable among the pre-culture T cells). Interestingly, however, their cumulative frequency was lower against DPB1*02:01 compared with DPB1*09:01 (mean cumulative frequency 35.3 vs. 50.6%, respectively). Our data show that, despite lower levels of alloreactivity, a similar clonal diversity can be elicited by structurally similar compared with structurally dissimilar HLA-DPB1 alloantigens and demonstrate the power of TCRB immunosequencing in unraveling subtle qualitative changes not appreciable by conventional methods.


Assuntos
Autoantígenos/imunologia , Linfócitos T CD4-Positivos/fisiologia , Antígenos HLA-DP/imunologia , Isoantígenos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Alelos , Seleção Clonal Mediada por Antígeno , Variação Genética , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem
4.
Tumour Biol ; 39(3): 1010428317692246, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28345467

RESUMO

This study attempts to determine whether primary tumor tissue could reliably represent metastatic colorectal cancer in therapy-guiding analysis of mitochondrial microsatellite instability. Therefore, we investigated the concordance of microsatellite instability in D310, D514, and D16184 (mitochondrial DNA displacement loop), and its association with selected clinical categories and KRAS/NRAS/BRAF/PIK3CA/TP53 mutation status between primary and metastatic colorectal cancer tissue from 119 patients. Displacement loop microsatellite instability was significantly more frequently seen in lymph node metastases (53.1%) compared to primary tumors (37.5%) and distant metastases (21.4%) ( p = 0.0183 and p = 0.0005). The discordant rate was significantly higher in lymph node metastases/primary tumor pairs (74.6%) than in distant metastases/primary tumor pairs (52.4%) or lymph node metastases/distant metastases pairs (51.6%) ( p = 0.0113 and p = 0.0261) with more gain (86.7%) than loss (61.1%) of microsatellite instability in the discordant lymph node metastases ( p = 0.0024). Displacement loop instability occurred significantly more frequently in lymph node metastases and distant metastases of patients with early colorectal cancer onset age <60 years ( p = 0.0122 and p = 0.0129), was found with a significant high rate in a small cohort of TP53-mutated distant metastases ( p = 0.0418), and was associated with TP53 wild-type status of primary tumors ( p = 0.0009), but did not correlate with KRAS, NRAS, BRAF, or PIK3CA mutations. In conclusion, mitochondrial microsatellite instability and its association with selected clinical and molecular markers are discordant in primary and metastatic colorectal cancer, which could have importance for surveillance and therapeutic strategies.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , DNA Mitocondrial/genética , Instabilidade de Microssatélites , Adulto , Idoso , Idoso de 80 Anos ou mais , Classe I de Fosfatidilinositol 3-Quinases , Feminino , GTP Fosfo-Hidrolases/genética , Humanos , Metástase Linfática/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Taxa de Mutação , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
5.
J Clin Pathol ; 69(3): 204-8, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26281864

RESUMO

AIMS: Failure and side effects of combined cytotoxic therapy are challenges in the treatment of metastatic colorectal cancer (CRC). DPYD gene variations can potentially predict toxicity to 5-fluorouracil (FU)-based therapy and KRAS-, NRAS-, BRAF-, PIK3CA-wild type status is a known prerequisite for epidermal growth factor receptor (EGFR) inhibitor therapy. This study was performed to search for a possible link between these therapeutic markers. METHODS: The DPYD gene variations c.496A>G, c.1679T>G, c.2846A>T and KRAS/NRAS/BRAF/PIK3CA mutational status were determined in non-neoplastic, primary CRC and metastatic CRC tissue from 115 patients. RESULTS: The polymorphism c.496A>G was the DPYD gene variant with the highest detection rate (12.9%), occurred predominantly in females (86.7%, p=0.0044) and was exclusively seen in KRAS wild type primary CRC (15/65 (23.1%) vs 0/51 (0%) in KRAS-mutated primary CRC, respectively, p=0.0001). CONCLUSIONS: This genetic profile could define a patient group requiring alternative combined therapeutic approaches. Global testing of large patient cohorts is necessary to prove this concept.


Assuntos
Neoplasias Colorretais/genética , Di-Hidrouracila Desidrogenase (NADP)/genética , Mutação , Polimorfismo Genético , Proteínas Proto-Oncogênicas p21(ras)/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimetabólitos Antineoplásicos/efeitos adversos , Antimetabólitos Antineoplásicos/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Análise Mutacional de DNA , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Fluoruracila/efeitos adversos , Fluoruracila/metabolismo , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Farmacogenética , Fenótipo , Medicina de Precisão , Valor Preditivo dos Testes , Inibidores de Proteínas Quinases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...