Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 135(7): 2247-2263, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35597885

RESUMO

KEY MESSAGE: This study identified a significant number of QTL that are associated with FHB disease resistance in NMBU spring wheat panel by conducting genome-wide association study. Fusarium head blight (FHB) is a widely known devastating disease of wheat caused by Fusarium graminearum and other Fusarium species. FHB resistance is quantitative, highly complex and divided into several resistance types. Quantitative trait loci (QTL) that are effective against several of the resistance types give valuable contributions to resistance breeding. A spring wheat panel of 300 cultivars and breeding lines of Nordic and exotic origins was tested in artificially inoculated field trials and subjected to visual FHB assessment in the years 2013-2015, 2019 and 2020. Deoxynivalenol (DON) content was measured on harvested grain samples, and anther extrusion (AE) was assessed in separate trials. Principal component analysis based on 35 and 25 K SNP arrays revealed the existence of two subgroups, dividing the panel into European and exotic lines. We employed a genome-wide association study to detect QTL associated with FHB traits and identify marker-trait associations that consistently influenced FHB resistance. A total of thirteen QTL were identified showing consistent effects across FHB resistance traits and environments. Haplotype analysis revealed a highly significant QTL on 7A, Qfhb.nmbu.7A.2, which was further validated on an independent set of breeding lines. Breeder-friendly KASP markers were developed for this QTL that can be used in marker-assisted selection. The lines in the wheat panel harbored from zero to five resistance alleles, and allele stacking showed that resistance can be significantly increased by combining several of these resistance alleles. This information enhances breeders´ possibilities for genomic prediction and to breed cultivars with improved FHB resistance.


Assuntos
Resistência à Doença , Fusarium , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Triticum/genética
2.
Transl Anim Sci ; 4(2): txaa073, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32705068

RESUMO

Survival and longevity are very important traits in pig breeding. From an economic standpoint, it is favorable to keep the sows for another parity instead of replacing them and, from the animal's perspective, better welfare is achieved if they do not experience health problems. It is challenging to record longevity in purebred (PB) nucleus herds because animals are more likely to be replaced based on breeding value and high replacement rates rather than inability to produce. Crossbred (CB) sows are, however, submitted to lower replacement rates and are more likely to be kept in the farm longer if they can produce large and robust litters. Therefore, the objective of this study was to investigate whether the use of CB phenotypes could improve prediction accuracy of longevity for PBs. In addition, a new definition of survival was investigated. The analyzed data included phenotypes from two PB dam lines and their F1 cross. Three traits were evaluated: 1) whether or not the sow got inseminated for a second litter within 85 d of first farrowing (Longevity 1-2), 2) how many litters the sow can produce within 570 d of first farrowing [Longevity 1-5 (LGY15)], and 3) a repeatability trait that indicates whether or not the sow survived until the next parity (Survival). Traits were evaluated both as the same across breeds and as different between breeds. Results indicated that longevity is not the same trait in PB and CB animals (low genetic correlation). In addition, there were differences between the two PB lines in terms of which trait definition gave the greatest prediction accuracy. The repeatability trait (Survival) gave the greatest prediction accuracy for breed B, but LGY15 gave the greatest prediction accuracy for breed A. Prediction accuracy for CBs was generally poor. The Survival trait is recorded earlier in life than LGY15 and seemed to give a greater prediction accuracy for young animals than LGY15 (until own phenotype was available). Thus, for selection of young animals for breeding, Survival would be the preferred trait definition. In addition, results indicated that lots of data were needed to get accurate estimates of breeding values and that, if CB performance is the breeding goal, CB phenotypes should be used in the genetic evaluation.

3.
J Anim Sci ; 96(7): 2826-2837, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-29741639

RESUMO

Apparent total-tract digestibility (ATTD) of nutrients could be an alternative measure of feed efficiency (FE) when breeding for robust animals that are fed fiber-rich diets. Apparent total-tract digestibility of nutrients requires measuring individual feed intake of a large number of animals which is expensive and complex. Alternatively, ATTD of nutrients and feces chemical composition can be predicted using fecal near-infrared reflectance spectroscopy (FNIRS). The objective of this study was to assess if the feces chemical composition and ATTD of nutrients can be predicted using FNIRS that originate from various pig-experimental datasets. Fecal samples together with detailed information on the feces chemical composition and ATTD of nutrients were obtained from four different pig experiments. Feces near-infrared spectroscopy was analyzed from fecal samples of a complete dataset. The model was calibrated using the FNIRS and reference samples of feces chemical composition and ATTD of nutrients. The robustness and predictability of the model were evaluated by the r2 and the closeness between SE of calibration (SEC) and SE of cross-validation (SECV). Prediction of the feces chemical components and ATTD of nutrients were successful as SEC and SECV were equivalent. Calibration model was developed to estimate the ATTD of nutrients and fecal chemical composition from the FNIRS and worked well for OM (r2 = 0.94; SEC = 48.5; SECV = 56.6), CP (r2 = 0.89; SEC = 18.1; SECV = 18.8), GE (r2 = 0.92; SEC = 1.2; SECV = 1.4), NDF (r2 = 0.94; SEC = 55; SECV = 60.2), OM digestibility (r2 = 0.94; SEC = 5.5; SECV = 6.7), GE digestibility (r2 = 0.88; SEC = 2.3; SECV = 2.6), and fat digestibility (r2 = 0.79; SEC = 6, SECV = 6.8). However, the SE of prediction was slightly higher than what has been reported in another study. The prediction of feces chemical composition for fat (r2 = 0.69; SEC = 11.7, SECV = 12.3), CP digestibility (r2 = 0.63; SEC = 2.3; SECV = 2.7), and NDF digestibility (r2 = 0.64, SEC = 7.7, SECV = 8.8) was moderate. We conclude that the FNIRS accurately predicts the chemical composition of feces and ATTD of nutrients for OM, CP, and GE. The approach of FNIRS is a cost-effective method for measuring digestibility and FE in a large-scale pig-breeding programs.


Assuntos
Ração Animal/análise , Suínos/fisiologia , Animais , Dieta/veterinária , Fibras na Dieta/análise , Digestão , Fezes/química , Feminino , Trato Gastrointestinal/fisiologia , Masculino , Espectroscopia de Luz Próxima ao Infravermelho/veterinária , Suínos/genética
4.
J Dairy Sci ; 101(2): 1292-1296, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29153527

RESUMO

The accuracy of genomic prediction determines response to selection. It has been hypothesized that accuracy of genomic breeding values can be increased by a higher density of variants. We used imputed whole-genome sequence data and various single nucleotide polymorphism (SNP) selection criteria to estimate genomic breeding values in Brown Swiss cattle. The extreme scenarios were 50K SNP chip data and whole-genome sequence data with intermediate scenarios using linkage disequilibrium-pruned whole-genome sequence variants, only variants predicted to be missense, or the top 50K variants from genome-wide association studies. We estimated genomic breeding values for 3 traits (somatic cell score, nonreturn rate in heifers, and stature) and found differences in accuracy levels between traits. However, among different SNP sets, accuracy was very similar. In our analyses, sequence data led to a marginal increase in accuracy for 1 trait and was lower than 50K for the other traits. We concluded that the inclusion of imputed whole-genome sequence data does not lead to increased accuracy of genomic prediction with the methods.


Assuntos
Bovinos/genética , Estudo de Associação Genômica Ampla/veterinária , Genoma , Polimorfismo de Nucleotídeo Único , Animais , Cruzamento , Feminino , Genômica/métodos , Genótipo , Desequilíbrio de Ligação , Análise de Sequência com Séries de Oligonucleotídeos/veterinária
5.
Genet Sel Evol ; 42: 16, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20525260

RESUMO

BACKGROUND: Detecting a QTL is only the first step in genetic improvement programs. When a QTL with desirable characteristics is found, e.g. in a wild or unimproved population, it may be interesting to introgress the detected QTL into the commercial population. One approach to shorten the time needed for introgression is to combine both QTL identification and introgression, into a single step. This combines the strengths of fine mapping and backcrossing and paves the way for introgression of desirable but unknown QTL into recipient animal and plant lines. METHODS: The method consisting in combining QTL mapping and gene introgression has been extended from inbred to outbred populations in which QTL allele frequencies vary both in recipient and donor lines in different scenarios and for which polygenic effects are included in order to model background genes. The effectiveness of the combined QTL detection and introgression procedure was evaluated by simulation through four backcross generations. RESULTS: The allele substitution effect is underestimated when the favourable QTL allele is not fixed in the donor line. This underestimation is proportional to the frequency differences of the favourable QTL allele between the lines. In most scenarios, the estimates of the QTL location are unbiased and accurate. The retained donor chromosome segment and linkage drag are similar to expected values from other published studies. CONCLUSIONS: In general, our results show that it is possible to combine QTL detection and introgression even in outbred species. Separating QTL mapping and introgression processes is often thought to be longer and more costly. However, using a combined process saves at least one generation. With respect to the linkage drag and obligatory drag, the results of the combined detection and introgression scheme are very similar to those of traditional introgression schemes.


Assuntos
Mapeamento Cromossômico , Locos de Características Quantitativas , Alelos , Animais , Bovinos , Frequência do Gene , Endogamia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...