Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Biol ; 426(2): 362-76, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24513105

RESUMO

Recently, several short peptides have been shown to self-assemble into amyloid fibrils with generic cross-ß spines, so-called steric zippers, suggesting common underlying structural features and aggregation mechanisms. Understanding these mechanisms is a prerequisite for designing fibril-binding compounds and inhibitors of fibril formation. The hexapeptide VEALYL, corresponding to the residues B12-17 of full-length insulin, has been identified as one of these short segments. Here, we analyzed the structures of multiple, morphologically different (fibrillar, microcrystal-like, oligomeric) [(13)C,(15)N]VEALYL samples by solid-state nuclear magnetic resonance complemented with results from molecular dynamics simulations. By performing NHHC/CHHC experiments, we could determine that the ß-strands within a given sheet of the amyloid-like fibrils formed by the insulin hexapeptide VEALYL are stacked in an antiparallel manner, whereas the sheet-to-sheet packing arrangement was found to be parallel. Experimentally observed secondary chemical shifts for all aggregate forms, as well as Ø and ψ backbone torsion angles calculated with TALOS, are indicative of ß-strand conformation, consistent with the published crystal structure (PDB ID: 2OMQ). Thus, we could demonstrate that the structural features of all the observed VEALYL aggregates are in agreement with the previously observed homosteric zipper spine packing in the crystalline state, suggesting that several distinct aggregate morphologies share the same molecular architecture.


Assuntos
Amiloide/metabolismo , Insulina/metabolismo , Peptídeos/metabolismo , Desnaturação Proteica , Multimerização Proteica , Motivos de Aminoácidos , Amiloide/química , Insulina/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica , Modelos Moleculares , Simulação de Dinâmica Molecular , Peptídeos/química , Conformação Proteica
2.
J Biol Chem ; 287(20): 16447-53, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22447935

RESUMO

Synaptotagmin-1 is the main Ca(2+) sensor of neuronal exocytosis. It binds to both Ca(2+) and the anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP(2)), but the precise cooperativity of this binding is still poorly understood. Here, we used microscale thermophoresis to quantify the cooperative binding of PIP(2) and Ca(2+) to synaptotagmin-1. We found that PIP(2) bound to the well conserved polybasic patch of the C2B domain with an apparent dissociation constant of ∼20 µM. PIP(2) binding reduced the apparent dissociation constant for Ca(2+) from ∼250 to <5 µM. Thus, our data show that PIP(2) makes synaptotagmin-1 >40-fold more sensitive to Ca(2+). This interplay between Ca(2+), synaptotagmin-1, and PIP(2) is crucial for neurotransmitter release.


Assuntos
Cálcio/química , Fosfatidilinositol 4,5-Difosfato/química , Sinaptotagmina I/química , Animais , Cálcio/metabolismo , Neurotransmissores/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo
3.
Nature ; 479(7374): 552-5, 2011 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-22020284

RESUMO

Neuronal exocytosis is catalysed by the SNAP receptor protein syntaxin-1A, which is clustered in the plasma membrane at sites where synaptic vesicles undergo exocytosis. However, how syntaxin-1A is sequestered is unknown. Here we show that syntaxin clustering is mediated by electrostatic interactions with the strongly anionic lipid phosphatidylinositol-4,5-bisphosphate (PIP2). Using super-resolution stimulated-emission depletion microscopy on the plasma membranes of PC12 cells, we found that PIP2 is the dominant inner-leaflet lipid in microdomains about 73 nanometres in size. This high accumulation of PIP2 was required for syntaxin-1A sequestering, as destruction of PIP2 by the phosphatase synaptojanin-1 reduced syntaxin-1A clustering. Furthermore, co-reconstitution of PIP2 and the carboxy-terminal part of syntaxin-1A in artificial giant unilamellar vesicles resulted in segregation of PIP2 and syntaxin-1A into distinct domains even when cholesterol was absent. Our results demonstrate that electrostatic protein-lipid interactions can result in the formation of microdomains independently of cholesterol or lipid phases.


Assuntos
Microdomínios da Membrana/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ligação Proteica , Eletricidade Estática , Sintaxina 1/química , Sintaxina 1/metabolismo , Animais , Colesterol , Microdomínios da Membrana/metabolismo , Microscopia Confocal , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/metabolismo , Células PC12 , Monoéster Fosfórico Hidrolases/metabolismo , Ratos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo
4.
Chem Commun (Camb) ; 47(33): 9405-7, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21773636

RESUMO

SNARE proteins mediate membrane fusion between synaptic vesicles and the plasma membrane. A minimized peptide SNARE model system with reduced complexity was introduced combining the native SNARE transmembrane (TMD) and linker domains with artificial coiled-coil forming peptides. Specific membrane fusion initiated by coiled-coil recognition was shown by lipid and content mixing vesicle assays.


Assuntos
Peptídeos/química , Proteínas SNARE/química , Sequência de Aminoácidos , Cristalografia por Raios X , Lipossomos/química , Fusão de Membrana , Dados de Sequência Molecular , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas SNARE/metabolismo , Sintaxina 1/química , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/química , Proteína 2 Associada à Membrana da Vesícula/metabolismo
6.
Nat Struct Mol Biol ; 18(7): 805-12, 2011 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-21642968

RESUMO

Synaptotagmin-1 triggers Ca(2+)-sensitive, rapid neurotransmitter release by promoting interactions between SNARE proteins on synaptic vesicles and the plasma membrane. How synaptotagmin-1 promotes this interaction is unclear, and the massive increase in membrane fusion efficiency of Ca(2+)-bound synaptotagmin-1 has not been reproduced in vitro. However, previous experiments have been performed at relatively high salt concentrations, screening potentially important electrostatic interactions. Using functional reconstitution in liposomes, we show here that at low ionic strength SNARE-mediated membrane fusion becomes strictly dependent on both Ca(2+) and synaptotagmin-1. Under these conditions, synaptotagmin-1 functions as a distance regulator that tethers the liposomes too far from the plasma membrane for SNARE nucleation in the absence of Ca(2+), but while bringing the liposomes close enough for membrane fusion in the presence of Ca(2+). These results may explain how the relatively weak electrostatic interactions between synaptotagmin-1 and membranes substantially accelerate fusion.


Assuntos
Cálcio/metabolismo , Proteínas SNARE/fisiologia , Sinaptotagmina I/fisiologia , Animais , Membrana Celular/metabolismo , Lipossomos/metabolismo , Fusão de Membrana/fisiologia , Modelos Moleculares , Concentração Osmolar , Ratos , Proteínas SNARE/química , Proteínas SNARE/metabolismo , Eletricidade Estática , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...