Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 25(7): 1-13, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32638570

RESUMO

SIGNIFICANCE: In multiphoton microscopy, two-photon excited fluorescence (TPEF) spectra carry valuable information on morphological and functional biological features. For measuring these biomarkers, separation of different parts of the fluorescence spectrum into channels is typically achieved by the use of optical band pass filters. However, spectra from different biomarkers can be unknown or overlapping, creating a crosstalk in between the channels. Previously, establishing these channels relied on prior knowledge or heuristic testing. AIM: The presented method aims to provide spectral bands with optimal separation between groups of specimens expressing different biomarkers. APPROACH: We have developed a system capable of resolving TPEF with high spectral resolution for the characterization of biomarkers. In addition, an algorithm is created to simulate and optimize optical band pass filters for fluorescence detection channels. To demonstrate the potential improvements in cell and tissue classification using these optimized channels, we recorded spectrally resolved images of cancerous (HT29) and normal epithelial colon cells (FHC), cultivated in 2D layers and in 3D to form spheroids. To provide an example of an application, we relate the results with the widely used redox ratio. RESULTS: We show that in the case of two detection channels, our system and algorithm enable the selection of optimized band pass filters without the need of knowing involved fluorophores. An improvement of 31,5% in separating different 2D cell cultures is achieved, compared to using established spectral bands that assume NAD(P)H and FAD as main contributors of autofluorescence. The compromise is a reduced SNR in the images. CONCLUSIONS: We show that the presented method has the ability to improve imaging contrast and can be used to tailor a given label-free optical imaging system using optical band pass filters targeting a specific biomarker or application.


Assuntos
Microscopia , Imagem Óptica , Biomarcadores , Corantes Fluorescentes , Microscopia de Fluorescência por Excitação Multifotônica , Fótons
2.
Biomed Opt Express ; 6(10): 3724-36, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26504624

RESUMO

We present a handheld biosensor system for the label-free and specific multiplexed detection of several biomarkers employing a spectrometer-free imaging measurement system. A photonic crystal surface functionalized with multiple specific ligands forms the optical transducer. The photonic crystal slab is fabricated on a glass substrate by replicating a periodic grating master stamp with a period of 370 nm into a photoresist via nanoimprint lithography and deposition of a 70-nm titanium dioxide layer. Capture molecules are coupled covalently and drop-wise to the photonic crystal surface. With a simple camera and imaging optics the surface-normal transmission is detected. In the transmission spectrum guided-mode resonances are observed that shift due to protein binding. This shift is observed as an intensity change in the green color channel of the camera. Non-functionalized image sections are used for continuous elimination of background drift. In a first experiment we demonstrate the specific and time-resolved detection of 90.0 nm CD40 ligand antibody, 90.0 nM EGF antibody, and 500 nM streptavidin in parallel on one sensor chip. In a second experiment, aptamers with two different spacer lengths are used as receptor. The binding kinetics with association and dissociation of 250 nM thrombin and regeneration of the sensor surface with acidic tris-HCl-buffer (pH 5.0) is presented for two measurement cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...