Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Liver Int ; 30(8): 1181-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20629947

RESUMO

BACKGROUND: Oleic acid is a major systemically circulating fatty acid in humans with atheroprotective and immunomodulatory properties. As of today, the contribution of individual cytochrome P450 (CYP) mono-oxygenases to the epoxidation of this fatty acid is unknown. Furthermore, the extent of the oleic acid oxidation product cis-9,10-epoxyoctadecanoic acid (cis-EODA) in humans and its plasma levels in patients with impaired liver function are not known. PATIENTS AND METHODS: We studied cis-EODA in plasma of patients suffering from chronic liver diseases, a condition that often displays impaired liver CYP enzyme activities. Fifteen CYP mono-oxygenases were investigated in vitro as a potential source of cis-EODA. RESULTS: Strikingly, plasma levels of cis-EODA were significantly repressed (P<0.0005) when patients with liver impairment (n=16) were compared with healthy subjects (n=14). Production of cis-EODA was catalysed by CYP in the following order: 2C8, 2C9, 2C19, 3A4, 1A2 and CYP3A7. CONCLUSION: cis-EODA plasma concentrations are decreased in hepatic disease with impaired liver function. Oleic acid is primarily oxidized to oleic acid oxide (cis-EODA) by CYP2C and CYP3A mono-oxygenases. The liver is the major organ responsible for the oxidation of oleic acid to cis-EODA, and thus, cis-EODA may be a suitable biomarker to assess liver function.


Assuntos
Biomarcadores/sangue , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatopatias/diagnóstico , Hepatopatias/metabolismo , Ácido Oleico/metabolismo , Adulto , Idoso , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Masculino , Pessoa de Meia-Idade , Estrutura Molecular , Ácido Oleico/sangue , Ácidos Esteáricos/sangue
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 877(28): 3442-55, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19595646

RESUMO

S-Nitrosothiols from low-molecular-mass and high-molecular-mass thiols, including glutathione, albumin and hemoglobin, are endogenous potent vasodilators and inhibitors of platelet aggregation. By utilizing the S-transnitrosation reaction and by using the lipophilic (pK(L) 0.78) and strong nucleophilic synthetic thiol N-acetyl cysteine ethyl ester (NACET) we have developed a GC-MS method for the analysis of S-nitrosothiols and their (15)N- or (2)H-(15)N-labelled analogs as S-nitroso-N-acetyl cysteine ethyl ester (SNACET) and S(15)NACET or d(3)-S(15)NACET derivatives, respectively, after their extraction with ethyl acetate. Injection of ethyl acetate solutions of S-nitrosothiols produced two main reaction products, compound X and compound Y, within the injector in dependence on its temperature. Quantification was performed by selected-ion monitoring of m/z 46 (i.e., [NO(2)](-)) for SNACET and m/z 47 (i.e., [(15)NO(2)](-)) for S(15)NACET/d(3)-S(15)NACET for compound X, and m/z 157 for SNACET and m/z 160 for d(3)-S(15)NACET for compound Y. In this article we describe the development, validation and in vitro and in vivo applications of the method to aqueous buffered solutions, human and rabbit plasma. Given the ester functionality of SNACET/S(15)NACET/d(3)-S(15)NACET, stability studies were performed using metal chelators and esterase inhibitors. The method was found to be suitable for the quantitative determination of various S-nitrosothiols including SNACET externally added to human plasma (0-10microM). Nitrite contamination in ethyl acetate was found to interfere. Our results suggest that the concentration of endogenous S-nitrosothiols in human plasma does not exceed about 200nM in total. Oral administration of S(15)NACET to rabbits (40-63micromol/kg body weight) resulted in formation of ALB-S(15)NO, [(15)N]nitrite and [(15)N]nitrate in plasma.


Assuntos
Acetatos/química , Cisteína/análogos & derivados , Cromatografia Gasosa-Espectrometria de Massas/métodos , S-Nitrosotióis/química , Adulto , Animais , Cisteína/administração & dosagem , Cisteína/sangue , Cisteína/química , Feminino , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Humanos , Masculino , Nitrosação , Coelhos , S-Nitrosotióis/sangue , Adulto Jovem
4.
Pharm Res ; 25(8): 1822-7, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18427962

RESUMO

PURPOSE: We investigated the inhibitory effects of curcumin, curcumin derivatives and degradation products on OKT3-induced human peripheral blood mononuclear cell (PBMC) proliferation and the role of their radical scavenging activity. METHODS: OKT3-induced human PBMC proliferation was determined by measuring 3H-thymidine incorporation. Radical scavenging activity was evaluated by using an in vitro DPPH assay. RESULTS: OKT3-induced PBMC proliferation was inhibited by curcumin, isocurcumin, bisdesmethoxy-, diacetyl-, tetrahydro-, hexahydro-, and octahydrocurcumin as well as by vanillin, ferulic acid, and dihydroferulic acid with IC50-values of 2.8, 2.8, 6.4, 1.0, 25, 38, 82, 729, 457, and >1,000 microM, respectively. The investigated substances with the strongest effect on radical scavenging were tetrahydro-, hexahydro-, and octahydrocurcumin with IC50 values of 10.0, 11.7, and 12.3 microM, respectively. IC50-values of dihydroferulic acid, ferulic acid, and curcumin were 19.5, 37, and 40 microM. The substances with the lowest radical scavenging activities were vanillin, isocurcumin, diacetylcurcumin, and bisdesmethoxycurcumin with IC50 values higher than 100 microM each. CONCLUSIONS: Curcuminoid-induced inhibition of OKT3-induced PBMC proliferation depends on the number of carbon atoms and double bonds of the 1,6-heptadiene-3,5-dione structure as well as on the phenolic ring substitutes of the curcuminoids but is not correlated to their respective radical scavenging activity.


Assuntos
Curcumina/análogos & derivados , Curcumina/farmacologia , Sequestradores de Radicais Livres/farmacologia , Linfócitos T/efeitos dos fármacos , Adulto , Compostos de Bifenilo , Complexo CD3/imunologia , Proliferação de Células/efeitos dos fármacos , Curcumina/síntese química , Humanos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Picratos/farmacologia , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
5.
Artigo em Inglês | MEDLINE | ID: mdl-15081936

RESUMO

Cytochrome P450 dependent epoxidation and non-enzymic lipid peroxidation of oleic acid (cis-9-octadecenoic acid) result in the formation of cis-9,10-epoxyoctadecanoic acid (cis-EODA). This oleic acid oxide has been identified indirectly in blood and urine of humans. Reliable concentrations of circulating cis-EODA have not been reported thus far. In the present article, we report on the first GC-tandem MS method for the accurate quantitative determination in human plasma of authentic cis-EODA as its pentafluorobenzyl (PFB) ester. cis-[9,10-2H2]-EODA (cis-d2-EODA) was synthesized by chemical epoxidation of commercially available cis-[9,10-2H2]-9-octadecenoic acid and used as an internal standard for quantification. Endogenous cis-EODA and externally added cis-[9,10-2H2]-EODA were isolated from acidified plasma samples (1 ml; pH 4.5) by solvent or solid-phase extraction, converted into their PFB esters, isolated by HPLC and quantified by selected reaction monitoring. The parent ions [M-PFB]- at mass-to-charge ratio (m/z) 297 for cis-EODA and m/z 299 for (cis-d2-EODA) were subjected to collisionally-activated dissociation and the corresponding characteristic product ions at m/z 171 and 172 were monitored. In plasma of nine healthy humans (5 females, 4 males), cis-EODA was found to be present at 47.6+/-7.4 nM (mean+/-S.D.). Plasma cis-EODA levels were statistically insignificantly different (P=0.10403, t-test) in females (51.1+/-3.4 nM) and males (43.1+/-2.2 nM). cis-EODA was identified as a considerable contamination in laboratory plastic ware and found to contribute to endogenous cis-EODA by approximately 2 nM. The present GC-tandem MS method should be useful in investigating the physiological role(s) of cis-EODA in humans.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Ácidos Esteáricos/sangue , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Valores de Referência
6.
Artigo em Inglês | MEDLINE | ID: mdl-12505783

RESUMO

Oleic acid, cis-9-octadecenoic acid, is the major fatty acid in mammals. Its oxide, cis-9,10-epoxyoctadecanoic acid (cis-EODA), has been identified in blood and urine of humans, its origin is, however, still unknown. Lipid peroxidation and enzyme-catalyzed epoxidation of oleic acid are two possible sources. In the present article, we investigated by HPLC and GC-MS whether cis-EODA is formed enzymatically from oleic acid by the cytochrome P450 (CYP) system. Oleic acid, cis-EODA and its hydratation product threo-9,10-dihydroxyoctadecanoic acid (threo-DiHODA) were quantitated by HPLC as their p-bromophenacyl esters. For structure elucidation by GC-MS, the pentafluorobenzyl (PFB) esters of these compounds were isolated by HPLC and converted to their trimethylsilyl ether derivatives. Liver microsomes of rats, rabbits and humans oxidized oleic acid into cis-EODA. This is the first direct evidence for the enzymatic formation of cis-EODA from oleic acid. The epoxidation of oleic acid was found to depend on CYP, NADPH+H(+), and O(2). cis-EODA was measurable in incubates of liver microsomes for up to 30 min of incubation. Maximum cis-EODA concentrations were reached after 5-7 min of incubation and found to depend upon oleic acid concentration. Isolated rat hepatocytes hydratated cis-EODA into threo-DiHODA which was further converted to unknown metabolites. However, from incubation of oleic acid with these cells we could not detect threo-DiHODA or cis-EODA. Our study suggests that circulating and excretory cis-EODA may originate, at least in part, from CYP-catalyzed epoxidation of oleic acid. GC-MS of intact cis-EODA as its PFB ester in the negative-ion chemical ionization mode should be useful in investigating the physiological role of cis-EODA in man.


Assuntos
Ácidos Graxos/biossíntese , Cromatografia Gasosa-Espectrometria de Massas/métodos , Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Ácido Oleico/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Inibidores das Enzimas do Citocromo P-450 , Compostos de Epóxi/metabolismo , Ácidos Graxos/metabolismo , Cinética , Oxirredução , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...