Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6929, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903793

RESUMO

YAP is a transcriptional regulator that controls pluripotency, cell fate, and proliferation. How cells ensure the selective activation of YAP effector genes is unknown. This knowledge is essential to rationally control cellular decision-making. Here we leverage optogenetics, live-imaging of transcription, and cell fate analysis to understand and control gene activation and cell behavior. We reveal that cells decode the steady-state concentrations and timing of YAP activation to control proliferation, cell fate, and expression of the pluripotency regulators Oct4 and Nanog. While oscillatory YAP inputs induce Oct4 expression and proliferation optimally at frequencies that mimic native dynamics, cellular differentiation requires persistently low YAP levels. We identify the molecular logic of the Oct4 dynamic decoder, which acts through an adaptive change sensor. Our work reveals how YAP levels and dynamics enable multiplexing of information transmission for the regulation of developmental decision-making and establishes a platform for the rational control of these behaviors.


Assuntos
Optogenética , Células-Tronco , Diferenciação Celular/genética , Proliferação de Células/genética , Comunicação Celular
2.
Cell ; 186(14): 3049-3061.e15, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311454

RESUMO

Membrane tension is thought to be a long-range integrator of cell physiology. Membrane tension has been proposed to enable cell polarity during migration through front-back coordination and long-range protrusion competition. These roles necessitate effective tension transmission across the cell. However, conflicting observations have left the field divided as to whether cell membranes support or resist tension propagation. This discrepancy likely originates from the use of exogenous forces that may not accurately mimic endogenous forces. We overcome this complication by leveraging optogenetics to directly control localized actin-based protrusions or actomyosin contractions while simultaneously monitoring the propagation of membrane tension using dual-trap optical tweezers. Surprisingly, actin-driven protrusions and actomyosin contractions both elicit rapid global membrane tension propagation, whereas forces applied to cell membranes alone do not. We present a simple unifying mechanical model in which mechanical forces that engage the actin cortex drive rapid, robust membrane tension propagation through long-range membrane flows.


Assuntos
Actinas , Actomiosina , Actinas/metabolismo , Actomiosina/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Movimento Celular/fisiologia
4.
PLoS Comput Biol ; 16(12): e1008412, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33301446

RESUMO

How epithelial cells coordinate their polarity to form functional tissues is an open question in cell biology. Here, we characterize a unique type of polarity found in liver tissue, nematic cell polarity, which is different from vectorial cell polarity in simple, sheet-like epithelia. We propose a conceptual and algorithmic framework to characterize complex patterns of polarity proteins on the surface of a cell in terms of a multipole expansion. To rigorously quantify previously observed tissue-level patterns of nematic cell polarity (Morales-Navarrete et al., eLife 2019), we introduce the concept of co-orientational order parameters, which generalize the known biaxial order parameters of the theory of liquid crystals. Applying these concepts to three-dimensional reconstructions of single cells from high-resolution imaging data of mouse liver tissue, we show that the axes of nematic cell polarity of hepatocytes exhibit local coordination and are aligned with the biaxially anisotropic sinusoidal network for blood transport. Our study characterizes liver tissue as a biological example of a biaxial liquid crystal. The general methodology developed here could be applied to other tissues and in-vitro organoids.


Assuntos
Polaridade Celular , Animais , Forma Celular , Hepatócitos/citologia , Cristais Líquidos/química , Camundongos , Modelos Teóricos
5.
Mol Syst Biol ; 16(2): e8985, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32090478

RESUMO

The mechanisms of organ size control remain poorly understood. A key question is how cells collectively sense the overall status of a tissue. We addressed this problem focusing on mouse liver regeneration. Using digital tissue reconstruction and quantitative image analysis, we found that the apical surface of hepatocytes forming the bile canalicular network expands concomitant with an increase in F-actin and phospho-myosin, to compensate an overload of bile acids. These changes are sensed by the Hippo transcriptional co-activator YAP, which localizes to apical F-actin-rich regions and translocates to the nucleus in dependence of the integrity of the actin cytoskeleton. This mechanism tolerates moderate bile acid fluctuations under tissue homeostasis, but activates YAP in response to sustained bile acid overload. Using an integrated biophysical-biochemical model of bile pressure and Hippo signaling, we explained this behavior by the existence of a mechano-sensory mechanism that activates YAP in a switch-like manner. We propose that the apical surface of hepatocytes acts as a self-regulatory mechano-sensory system that responds to critical levels of bile acids as readout of tissue status.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ácidos e Sais Biliares/metabolismo , Canalículos Biliares/metabolismo , Proteínas de Ciclo Celular/metabolismo , Hepatócitos/citologia , Actinas/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Hepatócitos/metabolismo , Regeneração Hepática , Masculino , Mecanotransdução Celular , Camundongos , Miosinas/metabolismo , Tamanho do Órgão , Transporte Proteico , Biologia de Sistemas , Proteínas de Sinalização YAP
6.
Elife ; 82019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31204997

RESUMO

Functional tissue architecture originates by self-assembly of distinct cell types, following tissue-specific rules of cell-cell interactions. In the liver, a structural model of the lobule was pioneered by Elias in 1949. This model, however, is in contrast with the apparent random 3D arrangement of hepatocytes. Since then, no significant progress has been made to derive the organizing principles of liver tissue. To solve this outstanding problem, we computationally reconstructed 3D tissue geometry from microscopy images of mouse liver tissue and analyzed it applying soft-condensed-matter-physics concepts. Surprisingly, analysis of the spatial organization of cell polarity revealed that hepatocytes are not randomly oriented but follow a long-range liquid-crystal order. This does not depend exclusively on hepatocytes receiving instructive signals by endothelial cells, since silencing Integrin-ß1 disrupted both liquid-crystal order and organization of the sinusoidal network. Our results suggest that bi-directional communication between hepatocytes and sinusoids underlies the self-organization of liver tissue.


Assuntos
Polaridade Celular , Hepatócitos/citologia , Cristais Líquidos/química , Fígado/citologia , Algoritmos , Animais , Capilares/química , Capilares/citologia , Capilares/metabolismo , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Hepatócitos/química , Hepatócitos/metabolismo , Integrina beta1/genética , Integrina beta1/metabolismo , Fígado/irrigação sanguínea , Fígado/química , Masculino , Camundongos Endogâmicos C57BL , Microscopia Confocal , Interferência de RNA
7.
J Hepatol ; 69(6): 1308-1316, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30213590

RESUMO

BACKGROUND & AIMS: Most cholesterol gallstones have a core consisting of inorganic and/or organic calcium salts, although the mechanisms of core formation are poorly understood. We examined whether the paracellular permeability of ions at hepatic tight junctions is involved in the core formation of cholesterol gallstones, with particular interest in the role of phosphate ion, a common food additive and preservative. METHODS: We focused on claudin-3 (Cldn3), a paracellular barrier-forming tight junction protein whose expression in mouse liver decreases with age. Since Cldn3-knockout mice exhibited gallstone diseases, we used them to assess the causal relationship between paracellular phosphate ion permeability and the core formation of cholesterol gallstones. RESULTS: In the liver of Cldn3-knockout mice, the paracellular phosphate ion permeability through hepatic tight junctions was significantly increased, resulting in calcium phosphate core formation. Cholesterol overdose caused cholesterol gallstone disease in these mice. CONCLUSION: We revealed that in the hepatobiliary system, Cldn3 functions as a paracellular barrier for phosphate ions, to help maintain biliary ion homeostasis. We provide in vivo evidence that elevated phosphate ion concentrations play a major role in the lifestyle- and age-related risks of developing cholesterol gallstone disease under cholesterol overdose. LAY SUMMARY: Herein, we reveal a new mechanism for cholesterol gallstone formation, in which increased paracellular phosphate ion permeability across hepatobiliary epithelia causes calcium phosphate core formation and cholesterol gallstones. Thus, altered phosphate ion metabolism under cholesterol overdose plays a major role in the lifestyle- and age-related risks of developing cholesterol gallstone disease.


Assuntos
Canalículos Biliares/metabolismo , Permeabilidade da Membrana Celular/fisiologia , Colesterol/metabolismo , Claudina-3/metabolismo , Cálculos Biliares/metabolismo , Envelhecimento/fisiologia , Animais , Aquaporinas/metabolismo , Cálcio/metabolismo , Fosfatos de Cálcio/metabolismo , Claudina-3/genética , Claudinas/genética , Claudinas/metabolismo , Feminino , Técnicas de Inativação de Genes , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fósforo/metabolismo , Junções Íntimas/metabolismo
8.
ChemMedChem ; 12(21): 1776-1793, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28961375

RESUMO

Selective inhibition of exclusively transcription-regulating PTEFb/CDK9 is a promising new approach in cancer therapy. Starting from lead compound BAY-958, lead optimization efforts strictly focusing on kinase selectivity, physicochemical and DMPK properties finally led to the identification of the orally available clinical candidate atuveciclib (BAY 1143572). Structurally characterized by an unusual benzyl sulfoximine group, BAY 1143572 exhibited the best overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats. BAY 1143572 is the first potent and highly selective PTEFb/CDK9 inhibitor to enter clinical trials for the treatment of cancer.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Sulfonamidas/uso terapêutico , Triazinas/uso terapêutico , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Quinase 9 Dependente de Ciclina/metabolismo , Meia-Vida , Células HeLa , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Camundongos Nus , Conformação Molecular , Simulação de Acoplamento Molecular , Neoplasias/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade , Estrutura Terciária de Proteína , Ratos , Ratos Nus , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/toxicidade , Transplante Heterólogo , Triazinas/química , Triazinas/toxicidade
9.
Cell Syst ; 4(3): 277-290.e9, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28330614

RESUMO

Bile, the central metabolic product of the liver, is transported by the bile canaliculi network. The impairment of bile flow in cholestatic liver diseases has urged a demand for insights into its regulation. Here, we developed a predictive 3D multi-scale model that simulates fluid dynamic properties successively from the subcellular to the tissue level. The model integrates the structure of the bile canalicular network in the mouse liver lobule, as determined by high-resolution confocal and serial block-face scanning electron microscopy, with measurements of bile transport by intravital microscopy. The combined experiment-theory approach revealed spatial heterogeneities of biliary geometry and hepatocyte transport activity. Based on this, our model predicts gradients of bile velocity and pressure in the liver lobule. Validation of the model predictions by pharmacological inhibition of Rho kinase demonstrated a requirement of canaliculi contractility for bile flow in vivo. Our model can be applied to functionally characterize liver diseases and quantitatively estimate biliary transport upon drug-induced liver injury.


Assuntos
Canalículos Biliares/metabolismo , Canalículos Biliares/fisiologia , Sistema Biliar/diagnóstico por imagem , Animais , Bile/metabolismo , Sistema Biliar/metabolismo , Sistema Biliar/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Colestase/metabolismo , Simulação por Computador , Previsões , Hepatócitos/metabolismo , Hidrodinâmica , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
10.
Int J Cancer ; 140(2): 449-459, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27699769

RESUMO

The PI3K-AKT-mTOR signaling cascade is activated in the majority of human cancers, and its activation also plays a key role in resistance to chemo and targeted therapeutics. In particular, in both breast and prostate cancer, increased AKT pathway activity is associated with cancer progression, treatment resistance and poor disease outcome. Here, we evaluated the activity of a novel allosteric AKT1/2 inhibitor, BAY 1125976, in biochemical, cellular mechanistic, functional and in vivo efficacy studies in a variety of tumor models. In in vitro kinase activity assays, BAY 1125976 potently and selectively inhibited the activity of full-length AKT1 and AKT2 by binding into an allosteric binding pocket formed by kinase and PH domain. In accordance with this proposed allosteric binding mode, BAY 1125976 bound to inactive AKT1 and inhibited T308 phosphorylation by PDK1, while the activity of truncated AKT proteins lacking the pleckstrin homology domain was not inhibited. In vitro, BAY 1125976 inhibited cell proliferation in a broad panel of human cancer cell lines. Particularly high activity was observed in breast and prostate cancer cell lines expressing estrogen or androgen receptors. Furthermore, BAY 1125976 exhibited strong in vivo efficacy in both cell line and patient-derived xenograft models such as the KPL4 breast cancer model (PIK3CAH1074R mutant), the MCF7 and HBCx-2 breast cancer models and the AKTE17K mutant driven prostate cancer (LAPC-4) and anal cancer (AXF 984) models. These findings indicate that BAY 1125976 is a potent and highly selective allosteric AKT1/2 inhibitor that targets tumors displaying PI3K/AKT/mTOR pathway activation, providing opportunities for the clinical development of new, effective treatments.


Assuntos
Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Células HeLa , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
11.
Elife ; 42015 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-26673893

RESUMO

A prerequisite for the systems biology analysis of tissues is an accurate digital three-dimensional reconstruction of tissue structure based on images of markers covering multiple scales. Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly developed algorithms that address specific challenges of thick dense tissue reconstruction. Our implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable to various mammalian tissues. We applied it to the analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating its generality and robustness.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia/métodos , Imagem Óptica/métodos , Animais , Fígado/anatomia & histologia , Camundongos Endogâmicos C57BL
12.
Zootaxa ; 3884(1): 65-72, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25543766

RESUMO

A new genus and species of freshwater crab is described from Madagascar. The new species is morphologically closest to the three species of the genus Foza Reed & Cumberlidge, 2006, but can easily be distinguished by having a completely smooth carapace with an unarmed anterolateral margin and a mandible with a distinctly shortened anterior lobe. This unusual suite of characters is sufficient to warrant the recognition of a new monotypic genus to accommodate this species.


Assuntos
Distribuição Animal , Braquiúros/anatomia & histologia , Braquiúros/classificação , Animais , Feminino , Água Doce , Madagáscar , Masculino , Especificidade da Espécie
13.
PLoS One ; 9(8): e105424, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25153985

RESUMO

We report on the distribution and abundance of megafauna on a deep-water rocky reef (1796-2373 m) in the Fram Strait, west of Svalbard. Biodiversity and population density are high, with a maximum average of 26.7±0.9 species m(-2) and 418.1±49.6 individuals m(-2) on the east side of the reef summit. These figures contrast with the surrounding abyssal plain fauna, with an average of only 18.1±1.4 species and 29.4±4.3 individuals m(-2) (mean ± standard error). The east side of the reef summit, where the highest richness and density of fauna are found, faces into the predominant bottom current, which likely increases in speed to the summit and serves as a source of particulate food for the numerous suspension feeders present there. We conclude that the observed faunal distribution patterns could be the result of hydrodynamic patterns and food availability above and around the reef. To our knowledge, this study is the first to describe the distribution and diversity of benthic fauna on a rocky reef in deep water.


Assuntos
Organismos Aquáticos/fisiologia , Biodiversidade , Recifes de Corais , Cadeia Alimentar , Densidade Demográfica , Svalbard
14.
Proc Biol Sci ; 281(1778): 20132681, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24430847

RESUMO

There is growing concern that global environmental change might exacerbate the ecological impacts of invasive species by increasing their per capita effects on native species. However, the mechanisms underlying such shifts in interaction strength are poorly understood. Here, we test whether ocean acidification, driven by elevated seawater pCO2, increases the susceptibility of native Olympia oysters to predation by invasive snails. Oysters raised under elevated pCO2 experienced a 20% increase in drilling predation. When presented alongside control oysters in a choice experiment, 48% more high-CO2 oysters were consumed. The invasive snails were tolerant of elevated CO2 with no change in feeding behaviour. Oysters raised under acidified conditions did not have thinner shells, but were 29-40% smaller than control oysters, and these smaller individuals were consumed at disproportionately greater rates. Reduction in prey size is a common response to environmental stress that may drive increasing per capita effects of stress-tolerant invasive predators.


Assuntos
Espécies Introduzidas , Ostreidae/fisiologia , Água do Mar/química , Caramujos/fisiologia , Animais , Feminino , Larva/fisiologia , Oceanos e Mares , Dinâmica Populacional , Comportamento Predatório
15.
Exp Toxicol Pathol ; 65(7-8): 949-60, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23466250

RESUMO

INTRODUCTION: Investigation of molecular mechanisms by gene expression profiling gains increasingly importance in preclinical safety evaluation. However, assigning expressed genes to specific cell populations is nearly impossible if the investigated RNA originates from whole tissue extracts. In this regard, Laser Capture Microdissection (LCM) can be used to detect changes specific to individual cell types. The objective of this study was to investigate the use of LCM for characterisation of progestin-related gene expression changes in the mammary gland. Thus, transcriptional profiles of the mammary gland of rats treated with a non-steroidal progesterone-receptor ligand, promegestone, medroxyprogesterone acetate, progesterone or vehicle were compared using whole tissue homogenates or LCM-captured epithelial cells. METHODS: Total RNA from 30 mammary glands was isolated from snap-frozen specimen of the whole tissue and from approximately 25.000-30.000 cells of cresyl violet stained frozen sections employing LCM. After amplification of averaged 0.2µg total RNA of LCM-captured samples, RNA was labelled, hybridised to Affymetrix GeneChips and analysed. RESULTS: LCM-captured samples showed up to 3-fold more differentially expressed probe sets (progesterone) and up to 10-fold more downregulated (promegestone) probe sets than whole tissue samples implying high cell specificity. Moreover, mammary gland specific differentiation markers like whey acidic protein, alpha lactalbumin, casein alpha s1 and casein kappa showed up to 3.4-fold (alpha lactalbumin, vehicle) higher expression values. Multivariate data analyses revealed a clear separation of gene expression profiles according to the method used, suggesting an amplification dependent bias. DISCUSSION: LCM transcriptional profiling provides highly cell-specific information. An amplification dependent bias was observed. The technical variability was shown to be smaller than the biological variability. For progestin-related transcriptional profiling of the mammary gland, whole tissue-sampling proved to yield more informative results. Therefore LCM should only be considered when cell-type specific gene expression profiles are necessary for an in depth evaluation.


Assuntos
Perfilação da Expressão Gênica/métodos , Microdissecção e Captura a Laser/métodos , Glândulas Mamárias Animais/metabolismo , Progestinas/biossíntese , Transcrição Gênica , Animais , Feminino , Microscopia Confocal , Análise de Sequência com Séries de Oligonucleotídeos , Progestinas/análise , Ratos , Transcriptoma
16.
PLoS One ; 7(3): e32914, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479348

RESUMO

Chromatin-immunoprecipitation (ChIP) employs generally a mild formaldehyde cross-linking step, which is followed by isolation of specific protein-DNA complexes and subsequent PCR testing, to analyze DNA-protein interactions. Poly(ADP-ribosyl)ation, a posttranslational modification involved in diverse cellular functions like repair, replication, transcription, and cell death regulation, is most prominent after DNA damage. Poly(ADP-ribose)polymerase-1 is activated upon binding to DNA strand-breaks and coordinates repair by recruitment or displacement of proteins. Several proteins involved in different nuclear pathways are directly modified or contain poly(ADP-ribose)-interaction motifs. Thus, poly(ADP-ribose) regulates chromatin composition. In immunofluorescence experiments, we noticed artificial polymer-formation after formaldehyde-fixation of undamaged cells. Therefore, we analyzed if the formaldehyde applied during ChIP also induces poly(ADP-ribosyl)ation and its impact on chromatin composition. We observed massive polymer-formation in three different ChIP-protocols tested independent on the cell line. This was due to induction of DNA damage signaling as monitored by γH2AX formation. To abrogate poly(ADP-ribose) synthesis, we inhibited this enzymatic reaction either pharmacologically or by increased formaldehyde concentration. Both approaches changed ChIP-efficiency. Additionally, we detected specific differences in promoter-occupancy of tested transcription factors as well as the in the presence of histone H1 at the respective sites. In summary, we show here that standard ChIP is flawed by artificial formation of poly(ADP-ribose) and suppression of this enzymatic activity improves ChIP-efficiency in general. Also, we detected specific changes in promoter-occupancy dependent on poly(ADP-ribose). By preventing polymer synthesis with the proposed modifications in standard ChIP protocols it is now possible to analyze the natural chromatin-composition.


Assuntos
Imunoprecipitação da Cromatina/métodos , Cromatina/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Células 3T3 , Animais , Linhagem Celular , Cromatina/efeitos dos fármacos , Cromatina/genética , Dano ao DNA , Fixadores/farmacologia , Formaldeído/farmacologia , Células HeLa , Histonas/metabolismo , Humanos , Camundongos , Microscopia de Fluorescência , Fenantrenos/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases , Reação em Cadeia da Polimerase , Ligação Proteica/efeitos dos fármacos
17.
Integr Zool ; 6(1): 45-55, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21392361

RESUMO

China lies at the heart of the global center of freshwater crab diversity in tropical Asia, where the 2 most diverse families occur: Potamidae (505 species, 95 genera) and Gecarcinucidae (344 species, 59 genera). China stands out as the country with the highest species richness of freshwater crabs globally. Its fauna comprises 243 species in 37 genera and in 2 families, and species discovery is still progressing at a rapid pace. The vast majority of the species are distributed in southwest, south central and eastern China in the Oriental zoogeographical region. China also stands out as having a highly endemic freshwater crab fauna at the species level (96%) and at the genus level (78%). Although the recent International Union for the Conservation of Nature (IUCN) red list conservation assessment found only 6 out of 228 species (2%) to be threatened (5 potamids and 1 gecarcinucid), the majority (more than 75%) of Chinese species are regarded as data deficient, so the number of threatened species is likely to be a serious underestimate. Threats from increasing habitat destruction and pollution are a major concern due to the rapidly growing economy and massive developments taking place in China. There is therefore an urgent need for increased species exploration and for the development of a conservation strategy for China's threatened (and potentially threatened) endemic freshwater crab species.


Assuntos
Biodiversidade , Braquiúros/fisiologia , Conservação dos Recursos Naturais/métodos , Demografia , Animais , Braquiúros/classificação , China , Espécies em Perigo de Extinção , Água Doce
18.
Toxicol Appl Pharmacol ; 252(2): 85-96, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21315101

RESUMO

The main goal of the present work was to better understand the molecular mechanisms underlying liver hypertrophy (LH), a recurrent finding observed following acute or repeated drug administration to animals, using transcriptomic technologies together with the results from conventional toxicology methods. Administration of 5 terminated proprietary drug candidates from participating companies involved in the EU Innomed PredTox Project or the reference hepatotoxicant troglitazone to rats for up to a 14-day duration induced LH as the main liver phenotypic toxicity outcome. The integrated analysis of transcriptomic liver expression data across studies turned out to be the most informative approach for the generation of mechanistic models of LH. In response to a xenobiotic stimulus, a marked increase in the expression of xenobiotic metabolizing enzymes (XME) was observed in a subset of 4 studies. Accumulation of these newly-synthesized proteins within the smooth endoplasmic reticulum (SER) would suggest proliferation of this organelle, which most likely is the main molecular process underlying the LH observed in XME studies. In another subset of 2 studies (including troglitazone), a marked up-regulation of genes involved in peroxisomal fatty acid ß-oxidation was noted, associated with induction of genes involved in peroxisome proliferation. Therefore, an increase in peroxisome abundance would be the main mechanism underlying LH noted in this second study subset. Together, the use of transcript profiling provides a means to generate putative mechanistic models underlying the pathogenesis of liver hypertrophy, to distinguish between subtle variations in subcellular organelle proliferation and creates opportunities for improved mechanism-based risk assessment.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Cromanos/toxicidade , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes/fisiologia , Tiazolidinedionas/toxicidade , Animais , Hipertrofia , Masculino , Proteômica/métodos , Ratos , Ratos Wistar , Troglitazona
19.
Toxicol Appl Pharmacol ; 252(2): 73-84, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20955723

RESUMO

In this publication, we report the outcome of the integrated EU Framework 6 PROJECT: Predictive Toxicology (PredTox), including methodological aspects and overall conclusions. Specific details including data analysis and interpretation are reported in separate articles in this issue. The project, partly funded by the EU, was carried out by a consortium of 15 pharmaceutical companies, 2 SMEs, and 3 universities. The effects of 16 test compounds were characterized using conventional toxicological parameters and "omics" technologies. The three major observed toxicities, liver hypertrophy, bile duct necrosis and/or cholestasis, and kidney proximal tubular damage were analyzed in detail. The combined approach of "omics" and conventional toxicology proved a useful tool for mechanistic investigations and the identification of putative biomarkers. In our hands and in combination with histopathological assessment, target organ transcriptomics was the most prolific approach for the generation of mechanistic hypotheses. Proteomics approaches were relatively time-consuming and required careful standardization. NMR-based metabolomics detected metabolite changes accompanying histopathological findings, providing limited additional mechanistic information. Conversely, targeted metabolite profiling with LC/GC-MS was very useful for the investigation of bile duct necrosis/cholestasis. In general, both proteomics and metabolomics were supportive of other findings. Thus, the outcome of this program indicates that "omics" technologies can help toxicologists to make better informed decisions during exploratory toxicological studies. The data support that hypothesis on mode of action and discovery of putative biomarkers are tangible outcomes of integrated "omics" analysis. Qualification of biomarkers remains challenging, in particular in terms of identification, mechanistic anchoring, appropriate specificity, and sensitivity.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , União Europeia , Rim/metabolismo , Rim/patologia , Fígado/metabolismo , Fígado/patologia , Toxicologia/métodos , Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Metabolômica/métodos , Metabolômica/tendências , Necrose , Valor Preditivo dos Testes , Proteômica/métodos , Proteômica/tendências , Ratos , Ratos Wistar , Toxicologia/tendências
20.
Exp Toxicol Pathol ; 60(4-5): 235-45, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18479893

RESUMO

The widespread use of digital slides has only recently come to the fore with the development of high-throughput scanners and high performance viewing software. This development, along with the optimisation of compression standards and image transfer techniques, has allowed the technology to be used in wide reaching applications including integration of images into hospital information systems and histopathological training, as well as the development of automated image analysis algorithms for prediction of histological aberrations and quantification of immunohistochemical stains. Here, the use of this technology in the creation of a comprehensive library of images of preclinical toxicological relevance is demonstrated. The images, acquired using the Aperio ScanScope CS and XT slide acquisition systems, form part of the ongoing EU FP6 Integrated Project, Innovative Medicines for Europe (InnoMed). In more detail, PredTox (abbreviation for Predictive Toxicology) is a subproject of InnoMed and comprises a consortium of 15 industrial (13 large pharma, 1 technology provider and 1 SME) and three academic partners. The primary aim of this consortium is to assess the value of combining data generated from 'omics technologies (proteomics, transcriptomics, metabolomics) with the results from more conventional toxicology methods, to facilitate further informed decision making in preclinical safety evaluation. A library of 1709 scanned images was created of full-face sections of liver and kidney tissue specimens from male Wistar rats treated with 16 proprietary and reference compounds of known toxicity; additional biological materials from these treated animals were separately used to create 'omics data, that will ultimately be used to populate an integrated toxicological database. In respect to assessment of the digital slides, a web-enabled digital slide management system, Digital SlideServer (DSS), was employed to enable integration of the digital slide content into the 'omics database and to facilitate remote viewing by pathologists connected with the project. DSS also facilitated manual annotation of digital slides by the pathologists, specifically in relation to marking particular lesions of interest. Tissue microarrays (TMAs) were constructed from the specimens for the purpose of creating a repository of tissue from animals used in the study with a view to later-stage biomarker assessment. As the PredTox consortium itself aims to identify new biomarkers of toxicity, these TMAs will be a valuable means of validation. In summary, a large repository of histological images was created enabling the subsequent pathological analysis of samples through remote viewing and, along with the utilisation of TMA technology, will allow the validation of biomarkers identified by the PredTox consortium. The population of the PredTox database with these digitised images represents the creation of the first toxicological database integrating 'omics and preclinical data with histological images.


Assuntos
Bases de Dados Factuais , Armazenamento e Recuperação da Informação/métodos , Ratos , Análise Serial de Tecidos , Toxicologia/métodos , Animais , Processamento de Imagem Assistida por Computador , Masculino , Ratos Wistar , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...