Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Inorg Chem ; 23(7): 1119-1128, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29523971

RESUMO

This study explores key features of bromine and iodine metabolism in the filamentous brown alga and genomics model Ectocarpus siliculosus. Both elements are accumulated in Ectocarpus, albeit at much lower concentration factors (2-3 orders of magnitude for iodine, and < 1 order of magnitude for bromine) than e.g. in the kelp Laminaria digitata. Iodide competitively reduces the accumulation of bromide. Both iodide and bromide are accumulated in the cell wall (apoplast) of Ectocarpus, with minor amounts of bromine also detectable in the cytosol. Ectocarpus emits a range of volatile halogenated compounds, the most prominent of which by far is methyl iodide. Interestingly, biosynthesis of this compound cannot be accounted for by vanadium haloperoxidase since the latter have not been found to catalyze direct halogenation of an unactivated methyl group or hydrocarbon so a methyl halide transferase-type production mechanism is proposed.


Assuntos
Bromo/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Iodo/metabolismo , Phaeophyceae/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Bromo/química , Halogenação , Hidrocarbonetos Halogenados/química , Iodo/química , Phaeophyceae/química , Phaeophyceae/citologia , Compostos Orgânicos Voláteis/química
2.
Sci Rep ; 5: 16471, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26621052

RESUMO

Perineuronal nets (PNs) are a specialized form of brain extracellular matrix, consisting of negatively charged glycosaminoglycans, glycoproteins and proteoglycans in the direct microenvironment of neurons. Still, locally immobilized charges in the tissue have not been accessible so far to direct observations and quantifications. Here, we present a new approach to visualize and quantify fixed charge-densities on brain slices using a focused proton-beam microprobe in combination with ionic metallic probes. For the first time, we can provide quantitative data on the distribution and net amount of pericellularly fixed charge-densities, which, determined at 0.4-0.5 M, is much higher than previously assumed. PNs, thus, represent an immobilized ion exchanger with ion sorting properties high enough to partition mobile ions in accord with Donnan-equilibrium. We propose that fixed charge-densities in the brain are involved in regulating ion mobility, the volume fraction of extracellular space and the viscosity of matrix components.


Assuntos
Encéfalo/metabolismo , Matriz Extracelular/metabolismo , Animais , Ânions/metabolismo , Ratos
3.
Biochem Biophys Res Commun ; 447(3): 413-8, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24717648

RESUMO

Carbon monoxide dehydrogenase (CO dehydrogenase) from Oligotropha carboxidovorans is a structurally characterized member of the molybdenum hydroxylase enzyme family. It catalyzes the oxidation of CO (CO+H2O→CO2+2e(-)+2H(+)) which proceeds at a unique [CuSMo(O)OH] metal cluster. Because of changing activities of CO dehydrogenase, particularly in subcellular fractions, we speculated whether the enzyme would be subject to regulation by thiols (RSH). Here we establish inhibition of CO dehydrogenase by thiols and report the corresponding Ki-values (mM): l-cysteine (5.2), d-cysteine (9.7), N-acetyl-l-cysteine (8.2), d,l-homocysteine (25.8), l-cysteine-glycine (2.0), dithiothreitol (4.1), coenzyme A (8.3), and 2-mercaptoethanol (9.3). Inhibition of the enzyme was reversed by CO or upon lowering the thiol concentration. Electron paramagnetic resonance spectroscopy (EPR) and X-ray absorption spectroscopy (XAS) of thiol-inhibited CO dehydrogenase revealed a bimetallic site in which the RSH coordinates to the Cu-ion as a third ligand {[Mo(VI)(O)OH(2)SCu(I)(SR)S-Cys]} leaving the redox state of the Cu(I) and the Mo(VI) unchanged. Collectively, our findings establish a regulation of CO dehydrogenase activity by thiols in vitro. They also corroborate the hypothesis that CO interacts with the Cu-ion first. The result that thiol compounds much larger than CO can freely travel through the substrate channel leading to the bimetallic cluster challenges previous concepts involving chaperone function and is of importance for an understanding how the sulfuration step in the assembly of the bimetallic cluster might proceed.


Assuntos
Aldeído Oxirredutases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Bradyrhizobiaceae/enzimologia , Complexos Multienzimáticos/antagonistas & inibidores , Compostos de Sulfidrila/farmacologia , Aldeído Oxirredutases/química , Proteínas de Bactérias/química , Domínio Catalítico/efeitos dos fármacos , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Molibdênio/química , Complexos Multienzimáticos/química , Oxirredução
4.
Angew Chem Int Ed Engl ; 53(1): 299-304, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24375742

RESUMO

The structures of two types of guanidine-quinoline copper complexes have been investigated by single-crystal X-ray crystallography, K-edge X-ray absorption spectroscopy (XAS), resonance Raman and UV/Vis spectroscopy, cyclic voltammetry, and density functional theory (DFT). Independent of the oxidation state, the two structures, which are virtually identical for solids and complexes in solution, resemble each other strongly and are connected by a reversible electron transfer at 0.33 V. By resonant excitation of the two entatic copper complexes, the transition state of the electron transfer is accessible through vibrational modes, which are coupled to metal-ligand charge transfer (MLCT) and ligand-metal charge transfer (LMCT) states.


Assuntos
Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Eletroquímica , Modelos Moleculares , Estrutura Molecular , Oxirredução , Difração de Raios X
5.
J Phycol ; 50(4): 652-64, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26988449

RESUMO

Members of various algal lineages are known to be strong producers of atmospherically relevant halogen emissions, that is a consequence of their capability to store and metabolize halogens. This study uses a noninvasive, synchrotron-based technique, X-ray absorption spectroscopy, for addressing in vivo bromine speciation in the brown algae Ectocarpus siliculosus, Ascophyllum nodosum, and Fucus serratus, the red algae Gracilaria dura, G. gracilis, Chondrus crispus, Osmundea pinnatifida, Asparagopsis armata, Polysiphonia elongata, and Corallina officinalis, the diatom Thalassiosira rotula, the dinoflagellate Lingulodinium polyedrum and a natural phytoplankton sample. The results highlight a diversity of fundamentally different bromine storage modes: while most of the stramenopile representatives and the dinoflagellate store mostly bromide, there is evidence for Br incorporated in nonaromatic hydrocarbons in Thalassiosira. Red algae operate various organic bromine stores - including a possible precursor (by the haloform reaction) for bromoform in Asparagopsis and aromatically bound Br in Polysiphonia and Corallina. Large fractions of the bromine in the red algae G. dura and C. crispus and the brown alga F. serratus are present as Br(-) defects in solid KCl, similar to what was reported earlier for Laminaria parts. These results are discussed according to different defensive strategies that are used within algal taxa to cope with biotic or abiotic stresses.

6.
J Exp Bot ; 65(2): 585-94, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24368501

RESUMO

Although the iron uptake and storage mechanisms of terrestrial/higher plants have been well studied, the corresponding systems in marine algae have received far less attention. Studies have shown that while some species of unicellular algae utilize unique mechanisms of iron uptake, many acquire iron through the same general mechanisms as higher plants. In contrast, the iron acquisition strategies of the multicellular macroalgae remain largely unknown. This is especially surprising since many of these organisms represent important ecological and evolutionary niches in the coastal marine environment. It has been well established in both laboratory and environmentally derived samples, that a large amount of iron can be 'non-specifically' adsorbed to the surface of marine algae. While this phenomenon is widely recognized and has prompted the development of experimental protocols to eliminate its contribution to iron uptake studies, its potential biological significance as a concentrated iron source for marine algae is only now being recognized. This study used an interdisciplinary array of techniques to explore the nature of the extensive and powerful iron binding on the surface of both laboratory and environmental samples of the marine brown alga Ectocarpus siliculosus and shows that some of this surface-bound iron is eventually internalized. It is proposed that the surface-binding properties of E. siliculosus allow it to function as a quasibiological metal ion 'buffer', allowing iron uptake under the widely varying external iron concentrations found in coastal marine environments.


Assuntos
Ferro/metabolismo , Phaeophyceae/metabolismo , Soluções Tampão , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ácido Edético/farmacologia , Compostos Ferrosos/farmacologia , Íons , Cinética , Phaeophyceae/citologia , Phaeophyceae/efeitos dos fármacos , Phaeophyceae/ultraestrutura , Espectrometria por Raios X , Espectroscopia de Mossbauer , Termodinâmica , Fatores de Tempo
8.
J Exp Bot ; 64(10): 2653-64, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23606364

RESUMO

The metabolism of bromine in marine brown algae remains poorly understood. This contrasts with the recent finding that the accumulation of iodide in the brown alga Laminaria serves the provision of an inorganic antioxidant - the first case documented from a living system. The aim of this study was to use an interdisciplinary array of techniques to study the chemical speciation, transformation, and function of bromine in Laminaria and to investigate the link between bromine and iodine metabolism, in particular in the antioxidant context. First, bromine and iodine levels in different Laminaria tissues were compared by inductively coupled plasma MS. Using in vivo X-ray absorption spectroscopy, it was found that, similarly to iodine, bromine is predominantly present in this alga in the form of bromide, albeit at lower concentrations, and that it shows similar behaviour upon oxidative stress. However, from a thermodynamic and kinetic standpoint, supported by in vitro and reconstituted in vivo assays, bromide is less suitable than iodide as an antioxidant against most reactive oxygen species except superoxide, possibly explaining why kelps prefer to accumulate iodide. This constitutes the first-ever study exploring the potential antioxidant function of bromide in a living system and other potential physiological roles. Given the tissue-specific differences observed in the content and speciation of bromine, it is concluded that the bromide uptake mechanism is different from the vanadium iodoperoxidase-mediated uptake of iodide in L. digitata and that its function is likely to be complementary to the iodide antioxidant system for detoxifying superoxide.


Assuntos
Antioxidantes/metabolismo , Bromo/metabolismo , Iodo/metabolismo , Kelp/metabolismo , Laminaria/metabolismo , Bromo/análise , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Iodo/análise , Kelp/química , Kelp/genética , Laminaria/química , Laminaria/genética
9.
J Med Chem ; 55(11): 5601-13, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22621452

RESUMO

Tris(8-quinolinolato)gallium(III) (1, KP46) is a very promising investigational anticancer drug. Its interaction with serum proteins, elemental distribution, and coordination in tissue were investigated with X-ray absorption (XAS) methods. Model compounds with mixed O, N, and/or S donor atoms are reported. The coordination and structure of 1 in cell culture medium (minimum essential medium, MEM) and fetal calf serum (FCS) were probed by XANES and EXAFS. The interaction of 1 with the serum proteins apotransferrin (apoTf) and human serum albumin (HSA) was addressed as well. By application of micro-XAS to tissue samples from mice treated with 1, the gallium distribution pattern was analyzed and compared to those of physiological trace elements. The complex 1 turned out to be very stable under physiological conditions, in cell culture media and in tissue samples. The coordination environment of the metal center remains intact in the presence of apoTf and HSA. The gallium distribution pattern in tumor and liver tissue revealed high similarities to the distribution patterns of Zn and Fe, minor similarities to Cu and Ni, and no similarity to Ca.


Assuntos
Antineoplásicos/química , Proteínas Sanguíneas/química , Complexos de Coordenação/química , Gálio , Animais , Antineoplásicos/farmacocinética , Apoproteínas/química , Linhagem Celular Tumoral , Complexos de Coordenação/farmacocinética , Drogas em Investigação/química , Drogas em Investigação/farmacocinética , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Compostos Organometálicos , Oxiquinolina/análogos & derivados , Sarcoma 180/metabolismo , Soro , Albumina Sérica/química , Distribuição Tecidual , Transferrina/química , Espectroscopia por Absorção de Raios X
11.
Biochim Biophys Acta ; 1808(10): 2591-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21621506

RESUMO

TcHMA4 (GenBank no. AJ567384), a Cd/Zn transporting ATPase of the P(1B)-type (=CPx-type) was isolated and purified from roots of the Cd/Zn hyperaccumulator Thlaspi caerulescens. Optimisation of the purification protocol, based on binding of the natural C-terminal His-tag of the protein to a Ni-IDA metal affinity column, yielded pure, active TcHMA4 in quantities sufficient for its biochemical and biophysical characterisation with various techniques. TcHMA4 showed activity with Cu(2+), Zn(2+) and Cd(2+) under various concentrations (tested from 30nM to 10µM), and all three metal ions activated the ATPase at a concentration of 0.3µM. Notably, the enzyme worked best at rather high temperatures, with an activity optimum at 42°C. Arrhenius plots yielded interesting differences in activation energy. In the presence of zinc it remained constant (E(A)=38kJ⋅mol(-1)) over the whole concentration range while it increased from 17 to 42kJ⋅mol(-1) with rising copper concentration and decreased from 39 to 23kJ⋅mol(-1) with rising cadmium concentration. According to EXAFS the TcHMA4 appeared to bind Cd(2+) mainly by thiolate sulphur from cysteine, and not by imidazole nitrogen from histidine.


Assuntos
Adenosina Trifosfatases/metabolismo , Cádmio/metabolismo , Zinco/metabolismo , Adenosina Trifosfatases/isolamento & purificação , Biofísica , Eletroforese em Gel de Poliacrilamida , Espectrofotometria Atômica
13.
J Biol Inorg Chem ; 16(5): 799-807, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21487937

RESUMO

Streptococcus suis Dpr belongs to the Dps family of bacterial and archaeal proteins that oxidize Fe(2+) to Fe(3+) to protect microorganisms from oxidative damage. The oxidized iron is subsequently deposited as ferrihydrite inside a protein cavity, resulting in the formation of an iron core. The size and the magnetic properties of the iron core have attracted considerable attention for nanotechnological applications in recent years. Here, the magnetic and structural properties of the iron core in wild-type Dpr and four cavity mutants were studied. All samples clearly demonstrated a superparamagnetic behavior in superconducting quantum interference device magnetometry and Mössbauer spectroscopy compatible with that of superparamagnetic ferrihydrite nanoparticles. However, all the mutants exhibited higher magnetic moments than the wild-type protein. Furthermore, measurement of the iron content with inductively coupled plasma mass spectrometry revealed a smaller amount of iron in the iron cores of the mutants, suggesting that the mutations affect nucleation and iron deposition inside the cavity. The X-ray crystal structures of the mutants revealed no changes compared with the wild-type crystal structure; thus, the differences in the magnetic moments could not be attributed to structural changes in the protein. Extended X-ray absorption fine structure measurements showed that the coordination geometry of the iron cores of the mutants was similar to that of the wild-type protein. Taken together, these results suggest that mutation of the residues that surround the iron storage cavity could be exploited to selectively modify the magnetic properties of the iron core without affecting the structure of the protein and the geometry of the iron core.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Compostos Férricos/química , Nanopartículas/química , Streptococcus suis/química , Streptococcus suis/genética , Proteínas de Bactérias/metabolismo , Ceruloplasmina/metabolismo , Cristalografia por Raios X , Compostos Férricos/metabolismo , Ferritinas/metabolismo , Magnetismo , Mutação Puntual , Engenharia de Proteínas , Espectroscopia de Mossbauer , Streptococcus suis/metabolismo
14.
J Biol Inorg Chem ; 16(5): 683-94, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21437709

RESUMO

Metallothioneins (MTs) are small cysteine-rich proteins coordinating various transition metal ions, including Zn(II), Cd(II), and Cu(I). MTs are ubiquitously present in all phyla, indicating a successful molecular concept for metal ion binding in all organisms. The plant MT E(c)-1 from Triticum aestivum, common bread wheat, is a Zn(II)-binding protein that comprises two domains and binds up to six metal ions. The structure of the C-terminal four metal ion binding ß(E) domain was recently described. Here we present the structure of the N-terminal second domain, γ-E(c)-1, determined by NMR spectroscopy. The γ-E(c)-1 domain enfolds an M (2) (II) Cys(6) cluster and was characterized as part of the full-length Zn(6)E(c)-1 protein as well as in the form of the separately expressed domain, both in the Zn(II)-containing isoform and the Cd(II)-containing isoform. Extended X-ray absorption fine structure analysis of Zn(2)γ-E(c)-1 clearly shows the presence of a ZnS(4) coordination sphere with average Zn-S distances of 2.33 Å. (113)Cd NMR experiments were used to identify the M(II)-Cys connectivity pattern, and revealed two putative metal cluster conformations. In addition, the general metal ion coordination abilities of γ-E(c)-1 were probed with Cd(II) binding experiments as well as by pH titrations of the Zn(II) and Cd(II) forms, the latter suggesting an interaction of the γ domain and the ß(E) domain within the full-length protein.


Assuntos
Metalotioneína/química , Metais/metabolismo , Proteínas de Plantas/química , Triticum/química , Sequência de Aminoácidos , Cádmio/metabolismo , Metalotioneína/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas de Plantas/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Triticum/metabolismo , Zinco/metabolismo
15.
Mol Microbiol ; 79(2): 342-58, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21219456

RESUMO

Oxidation of methionine to methionine sulphoxide (MetSO) may lead to loss of molecular integrity and function. This oxidation can be 'repaired' by methionine sulphoxide reductases (MSRs), which reduce MetSO back to methionine. Two structurally unrelated classes of MSRs, MSRA and MSRB, show stereoselectivity towards the S and the R enantiomer of the sulphoxide respectively. Interestingly, these enzymes were even maintained throughout evolution in anaerobic organisms. Here, the activity and the nuclear magnetic resonance (NMR) structure of MTH711, a zinc containing MSRB from the thermophilic, methanogenic archaebacterium Methanothermobacter thermoautotrophicus, are described. The structure appears more rigid as compared with similar MSRBs from aerobic and mesophilic organisms. No significant structural differences between the oxidized and the reduced MTH711 state can be deduced from our NMR data. A stable sulphenic acid is formed at the catalytic Cys residue upon oxidation of the enzyme with MetSO. The two non-zinc-binding cysteines outside the catalytic centre are not necessary for activity of MTH711 and are not situated close enough to the active-site cysteine to serve in regenerating the active centre via the formation of an intramolecular disulphide bond. These findings imply a reaction cycle that differs from that observed for other MSRBs.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Methanobacteriaceae/enzimologia , Metionina Sulfóxido Redutases/química , Metionina Sulfóxido Redutases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Methanobacteriaceae/química , Methanobacteriaceae/metabolismo , Metionina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
16.
Metallomics ; 2(1): 57-66, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21072375

RESUMO

The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.


Assuntos
Ácido Azetidinocarboxílico/análogos & derivados , Schizosaccharomyces/metabolismo , Compostos de Zinco/metabolismo , Zinco/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Ácido Azetidinocarboxílico/química , Ácido Azetidinocarboxílico/metabolismo , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Modelos Biológicos , Schizosaccharomyces/química , Schizosaccharomyces/enzimologia , Schizosaccharomyces/genética , Thlaspi/química , Thlaspi/metabolismo , Elementos de Transição/química , Elementos de Transição/metabolismo , Espectroscopia por Absorção de Raios X , Zinco/química , Compostos de Zinco/química
17.
J Am Chem Soc ; 132(47): 16997-7003, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21062066

RESUMO

Phosphine-modified thioester derivatives are shown to serve as efficient precursors to phosphine-stabilized ferrous acyl thiolato carbonyls, which replicate key structural features of the active site of the hydrogenase Hmd. The reaction of Ph(2)PC(6)H(4)C(O)SPh and sources of Fe(0) generates both Fe(SPh)(Ph(2)PC(6)H(4)CO)(CO)(3) (1) and the diferrous diacyl Fe(2)(SPh)(2)(CO)(3)(Ph(2)PC(6)H(4)CO)(2), which carbonylates to give 1. For the extremely bulky arylthioester Ph(2)PC(6)H(4)C(O)SC(6)H(3)-2,6-(2,4,6-trimethylphenyl)(2), oxidative addition is arrested and the Fe(0) adduct of the phosphine is obtained. Complex 1 reacts with cyanide to give Et(4)N[Fe(SPh)(Ph(2)PC(6)H(4)CO)(CN)(CO)(2)] (Et(4)N[2]). (13)C and (31)P NMR spectra indicate that substitution is stereospecific and cis to P. The IR spectrum of [2](-) in ν(CN) and ν(CO) regions very closely matches that for Hmd(CN). XANES and EXAFS measurements also indicate close structural and electronic similarity of Et(4)N[2] to the active site of wild-type Hmd. Complex 1 also stereospecifically forms a derivative with TsCH(2)NC, but the adduct is more labile than Et(4)N[2]. Tricarbonyl 1 was found to reversibly protonate to give a thermally labile derivative, IR measurements of which indicate that the acyl and thiolate ligands are probably not protonated in Hmd.


Assuntos
Domínio Catalítico , Hidrogenase/química , Proteínas Ferro-Enxofre/química , Modelos Moleculares , Compostos Organometálicos/química , Cianetos/química , Compostos Heterocíclicos/química , Mathanococcus/enzimologia , Fosfinas/química , Prótons
18.
Dalton Trans ; 39(12): 3057-64, 2010 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-20221540

RESUMO

The [Fe]-hydrogenase is an ideal system for studying the electronic properties of the low spin iron site that is common to the catalytic centres of all hydrogenases. Because they have no auxiliary iron-sulfur clusters and possess a cofactor containing a single iron centre, the [Fe]-hydrogenases are well suited for spectroscopic analysis of those factors required for the activation of molecular hydrogen. Specifically, in this study we shed light on the electronic and molecular structure of the iron centre by XAS analysis of [Fe]-hydrogenase from Methanocaldococcus jannashii and five model complexes (Fe(ethanedithiolate)(CO)(2)(PMe(3))(2), [K(18-crown-6)](2)[Fe(CN)(2)(CO)(3)], K[Fe(CN)(CO)(4)], K(3)[Fe(III)(CN)(6)], K(4)[Fe(II)(CN)(6)]). The different electron donors have a strong influence on the iron absorption K-edge energy position, which is frequently used to determine the metal oxidation state. Our results demonstrate that the K-edges of Fe(II) complexes, achieved with low-spin ferrous thiolates, are consistent with a ferrous centre in the [Fe]-hydrogenase from Methanocaldococcus jannashii. The metal geometry also strongly influences the XANES and thus the electronic structure. Using in silico simulation, we were able to reproduce the main features of the XANES spectra and describe the effects of individual donor contributions on the spectra. Thereby, we reveal the essential role of an unusual carbon donor coming from an acyl group of the cofactor in the determination of the electronic structure required for the activity of the enzyme.


Assuntos
Hidrogenase/química , Proteínas Ferro-Enxofre/química , Ferro/química , Modelos Moleculares , Proteínas de Bactérias/química , Carbono/química , Hidrogênio/química , Estrutura Molecular , Oxirredução , Espectroscopia por Absorção de Raios X
19.
J Synchrotron Radiat ; 17(1): 25-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20029108

RESUMO

In biological systems, X-ray absorption spectroscopy (XAS) can determine structural details of metal binding sites with high resolution. Here a method enabling an automated analysis of the corresponding EXAFS data is presented, utilizing in addition to least-squares refinement the prior knowledge about structural details and important fit parameters. A metal binding motif is characterized by the type of donor atoms and their bond lengths. These fit results are compared by bond valance sum analysis and target distances with established structures of metal binding sites. Other parameters such as the Debye-Waller factor and shift of the Fermi energy provide further insights into the quality of a fit. The introduction of mathematical criteria, their combination and calibration allows an automated analysis of XAS data as demonstrated for a number of examples. This presents a starting point for future applications to all kinds of systems studied by XAS and allows the algorithm to be transferred to data analysis in other fields.


Assuntos
Algoritmos , Biopolímeros/química , Metaloproteínas/química , Metais/química , Espectroscopia por Absorção de Raios X/métodos , Sítios de Ligação , Ligação Proteica
20.
Plant Physiol ; 151(2): 715-31, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19692532

RESUMO

The cadmium/zinc hyperaccumulator Thlaspi caerulescens is sensitive toward copper (Cu) toxicity, which is a problem for phytoremediation of soils with mixed contamination. Cu levels in T. caerulescens grown with 10 microm Cu(2+) remained in the nonaccumulator range (<50 ppm), and most individuals were as sensitive toward Cu as the related nonaccumulator Thlaspi fendleri. Obviously, hyperaccumulation and metal resistance are highly metal specific. Cu-induced inhibition of photosynthesis followed the "sun reaction" type of damage, with inhibition of the photosystem II reaction center charge separation and the water-splitting complex. A few individuals of T. caerulescens were more Cu resistant. Compared with Cu-sensitive individuals, they recovered faster from inhibition, at least partially by enhanced repair of chlorophyll-protein complexes but not by exclusion, since the content of Cu in their shoots was increased by about 25%. Extended x-ray absorption fine structure (EXAFS) measurements on frozen-hydrated leaf samples revealed that a large proportion of Cu in T. caerulescens is bound by sulfur ligands. This is in contrast to the known binding environment of cadmium and zinc in the same species, which is dominated by oxygen ligands. Clearly, hyperaccumulators detoxify hyperaccumulated metals differently compared with nonaccumulated metals. Furthermore, strong features in the Cu-EXAFS spectra ascribed to metal-metal contributions were found, in particular in the Cu-resistant specimens. Some of these features may be due to Cu binding to metallothioneins, but a larger proportion seems to result from biomineralization, most likely Cu(II) oxalate and Cu(II) oxides. Additional contributions in the EXAFS spectra indicate complexation of Cu(II) by the nonproteogenic amino acid nicotianamine, which has a very high affinity for Cu(II) as further characterized here.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Cobre/metabolismo , Cobre/toxicidade , Thlaspi/efeitos dos fármacos , Thlaspi/metabolismo , Zinco/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Hidroponia , Inativação Metabólica , Cinética , Ligantes , Microscopia de Fluorescência , Fotossíntese/efeitos dos fármacos , Espectrofotometria Ultravioleta , Estresse Fisiológico/efeitos dos fármacos , Thlaspi/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...