Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage Clin ; 29: 102535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33369564

RESUMO

BACKGROUND AND OBJECTIVE: Reserve is defined as the ability to maintain cognitive functions relatively well at a given level of pathology. Early life experiences such as education are associated with lower dementia risk in general. However, whether more years of education guards against the impact of brain alterations also in frontotemporal dementia (FTD) has not been shown in a large patient collective. Therefore, we assessed whether education is associated with relatively high cognitive performance despite the presence of [18F]-fluorodeoxyglucose positron-emission-tomography (FDG-PET) hypometabolism in FTD. METHODS: Sixty-six FTD subjects (age 67 ± 8 years) and twenty-four cognitively healthy controls (HC) were evaluated. Brain regions with FTD-related glucose hypometabolism in the contrast against HC and brain regions that correlate with the cognitive function were defined by a voxel-based analysis and individual FDG-PET values were extracted from all frontotemporal brain areas. Linear regression analysis served to test if education is associated with residualized cognitive performance and regional FDG-PET hypometabolism after controlling for global cognition. RESULTS: Compared to healthy controls, patients with FTD showed glucose hypometabolism in bilateral frontal and temporal brain areas whereas cognition was only associated with deteriorated glucose metabolism in the left temporal lobe. The education level was significantly correlated with the residualized cognitive performance (residuals from regression analysis between hypometabolism and cognitive function as a quantitative index of reserve) and also negatively correlated with left temporal FDG-PET hypometabolism after controlling for cognition. CONCLUSIONS: In patients with FTD, the education level predicts the existing left temporal FDG-PET hypometabolism at the same cognition level, supporting the cognitive reserve hypothesis in FTD.


Assuntos
Reserva Cognitiva , Demência Frontotemporal , Idoso , Encéfalo , Fluordesoxiglucose F18 , Demência Frontotemporal/diagnóstico por imagem , Humanos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos
2.
Neuroimage Clin ; 24: 101949, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31398553

RESUMO

OBJECTIVES: Many predictive or influencing factors have emerged in investigations of the cognitive reserve model of patients with Alzheimer's disease (AD). For example, neuronal injury, which correlates with cognitive decline in AD, can be assessed by [18F]-fluorodeoxyglucose positron-emission-tomography (FDG-PET), structural magnetic resonance imaging (MRI) and total tau in cerebrospinal fluid (CSFt-tau), all according to the A/T/N-classification. The aim of this study was to calculate residual cognitive performance based on neuronal injury biomarkers as a surrogate of cognitive reserve, and to test the predictive value of this index for the individual clinical course. METHODS: 110 initially mild cognitive impaired and demented subjects (age 71 ±â€¯8 years) with a final diagnosis of AD dementia were assessed at baseline by clinical mini-mental-state-examination (MMSE), FDG-PET, MRI and CSFt-tau. All neuronal injury markers were tested for an association with clinical MMSE and the resulting residuals were correlated with years of education. We used multiple regression analysis to calculate the expected MMSE score based on neuronal injury biomarkers and covariates. The residuals of the partial correlation for each biomarker and the predicted residualized memory function were correlated with individual cognitive changes measured during clinical follow-up (27 ±â€¯13 months). RESULTS: FDG-PET correlated highly with clinical MMSE (R = -0.49, p < .01), whereas hippocampal atrophy to MRI (R = -0.15, p = .14) and CSFt-tau (R = -0.12, p = .22) showed only weak correlations. Residuals of all neuronal injury biomarker regressions correlated significantly with education level, indicating them to be surrogates of cognitive reserve. A positive residual was associated with faster cognitive deterioration at follow-up for the residuals of stand-alone FDG-PET (R = -0.36, p = .01) and the combined residualized memory function model (R = -0.35, p = .02). CONCLUSIONS: These findings suggest that subjects with higher cognitive reserve had accumulated more pathology, which subsequently caused a faster cognitive decline over time. Together with previous findings suggesting that higher reserve is associated with slower cognitive decline, we propose a biphasic reserve effect, with an initially protective phase followed by more rapid decompensation once the protection is overwhelmed.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Disfunção Cognitiva/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Reserva Cognitiva/fisiologia , Proteínas tau/líquido cefalorraquidiano , Idoso , Doença de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Feminino , Fluordesoxiglucose F18 , Seguimentos , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/tendências
3.
Front Neurol ; 9: 483, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973914

RESUMO

Background: F-18-fluordeoxyglucose positron emission tomography (FDG-PET) is widely used for discriminative diagnosis of tau-positive atypical parkinsonian syndromes (T+APS). This approach now stands to be augmented with more specific tau tracers. Therefore, we retrospectively analyzed a large clinical routine dataset of FDG-PET images for evaluation of the strengths and limitations of stand-alone FDG-PET. Methods: A total of 117 patients (age 68.4 ± 11.1 y) underwent an FDG-PET exam. Patients were followed clinically for a minimum of one year and their final clinical diagnosis was recorded. FDG-PET was rated visually (positive/negative) and categorized as high, moderate or low likelihood of T+APS and other neurodegenerative disorders. We then calculated positive and negative predictive values (PPV/NPV) of FDG-PET readings for the different subgroups relative to their final clinical diagnosis. Results: Suspected diagnoses were confirmed by clinical follow-up (≥1 y) for 62 out of 117 (53%) patients. PPV was excellent when FDG-PET indicated a high likelihood of T+APS in combination with low to moderate likelihood of another neurodegenerative disorder. PPV was distinctly lower when FDG-PET indicated only a moderate likelihood of T+APS or when there was deemed equal likelihood of other neurodegenerative disorder. NPV of FDG-PET with a low likelihood for T+APS was high. Conclusions: FDG-PET has high value in clinical routine evaluation of suspected T+APS, gaining satisfactory differential diagnosis in two thirds of the patients. One third of patients would potentially profit from further evaluation by more specific radioligands, with FDG-PET serving gatekeeper function for the more expensive methods.

4.
Eur J Nucl Med Mol Imaging ; 44(13): 2239-2248, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28932894

RESUMO

PURPOSE: In recent years, several [18F]-labeled amyloid-PET tracers have been developed and have obtained clinical approval. Despite their widespread scientific use, studies in routine clinical settings are limited. We therefore investigated the impact of [18F]-florbetaben (FBB)-PET on the diagnostic management of patients with suspected dementia that was still unclarified after [18F]-fluordeoxyglucose (FDG)-PET. METHODS: All subjects were referred in-house with a suspected dementia syndrome due to neurodegenerative disease. After undergoing an FDG-PET exam, the cases were discussed by the interdisciplinary dementia board, where the most likely diagnosis as well as potential differential diagnoses were documented. Because of persistent diagnostic uncertainty, the patients received an additional FBB-PET exam. Results were interpreted visually and classified as amyloid-positive or amyloid-negative, and we then compared the individual clinical diagnoses before and after additional FBB-PET. RESULTS: A total of 107 patients (mean age 69.4 ± 9.7y) were included in the study. The FBB-PET was rated as amyloid-positive in 65/107. In 83% of the formerly unclear cases, a final diagnosis was reached through FBB-PET, and the most likely prior diagnosis was changed in 28% of cases. The highest impact was observed for distinguishing Alzheimer's dementia (AD) from fronto-temporal dementia (FTLD), where FBB-PET altered the most likely diagnosis in 41% of cases. CONCLUSIONS: FBB-PET has a high additive value in establishing a final diagnosis in suspected dementia cases when prior investigations such as FDG-PET are inconclusive. The differentiation between AD and FTLD was particularly facilitated by amyloid-PET, predicting a considerable impact on patient management, especially in the light of upcoming disease-modifying therapies.


Assuntos
Amiloide/metabolismo , Demência/diagnóstico por imagem , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons , Demência/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...