Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 301: 125273, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31377628

RESUMO

This paper is the first to study whether and how interactions between puroindolines (PINs) and lipids affect bread loaf volume (LV). Flour from near-isogenic wheat lines differing in PIN haplotype and lipases were used in bread making. That lipase impact on LV strongly depended on the flour used supported the hypothesis that PINs modify the impact of enzymatic lipid hydrolysis on LV. In dough prepared from gluten-starch blends (GSB) differing in PIN levels, PINs did not affect enzymatic lipid hydrolysis itself. Gas cells in these GSB doughs were apparently not surrounded by surface-active compounds so that the impact of PIN-lipid interactions on LV could not be evaluated. This allowed concluding that lipase impact on LV is exclusively related to stabilization of gas cell interfaces in dough since lipase application did not change GSB LVs. Our results advance knowledge on PIN-lipid interactions and the impact of lipases in bread making.


Assuntos
Pão/análise , Manipulação de Alimentos , Lipase/metabolismo , Proteínas de Plantas/metabolismo , Triticum/metabolismo , Farinha , Glutens , Hidrólise , Lipídeos , Amido , Triticum/química
2.
Food Chem ; 298: 125002, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31260958

RESUMO

Lipids are only minor wheat flour constituents but play major roles in bread making (BM). Here, the importance of a well-balanced lipid population in BM was studied by applying a lipase from Fusarium oxysporum in the process. Monogalactosyldiacylglycerols and N-acyl phosphatidylethanolamines were the most accessible lipase substrates. Hydrolysis thereof into their corresponding lysolipids was largely if not entirely responsible for loaf volume increases upon lipase application. Degradation of endogenously present lipids and enzymatically released lysolipids caused loaf volume to decrease, confirming that an appropriate balance between different types of lipids is crucial in BM. For optimal dough gas cell stability, the level of lipids promoting lamellar mesophases and, thus, liquid condensed monolayers needs to be maximal while maintaining an appropriate balance between lipids promoting hexagonal I phases, non-polar lipids and lipids promoting hexagonal II or cubic phases.


Assuntos
Pão , Farinha , Lipase/metabolismo , Lipídeos/química , Triticum , Fermentação , Fusarium/enzimologia , Galactolipídeos/química , Galactolipídeos/metabolismo , Hidrólise , Lipase/química , Lisofosfolipídeos/química , Lisofosfolipídeos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Triticum/química , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...