Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Physiol ; 232(4): 818-830, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27404216

RESUMO

Vimentin (Vim), a cytoskeletal intermediate filament, is part of a naturally occurring reversible program, the Epithelial-Mesenchymal Transition (EMT), which converts epithelial cells into mesenchymal-like derivatives. Based on previous results showing that epithelial cells co-express Vim and keratin (Krt) as part of a cytoskeletal network which confers them a highly motile phenotype, we explored the role of Vim in rabbit corneal epithelial cells or RCE1(5T5) cells, an established model of corneal epithelial differentiation. Vim and keratin filaments were co-expressed in cells localized at the proliferative/migratory rim of the growing colonies, but not in basal cells from the center of the colonies nor at suprabasal cell layers. Flow cytometry and qPCR demonstrated that there was a decrease in Krt+ /Vim+ cell number and ΔNp63α expression when cells reached confluence and formed a 4-5 layered epithelium, while there was a concomitant increase of both Pax-6 expression and Krt+ /Vim- cells. Inhibition of cell proliferation with mitomycin C did not modify cell motility nor the expression of Vim. We studied the distribution and expression of α6 integrin, a protein also involved in cell migration. The results demonstrated that α6 integrin had a distribution which was, in part, co-linear with Vim at the proliferative/migratory rim of cell colonies, suggesting an indirect interaction between these proteins. Immunoprecipitation and immunostaining assays indicated that plectin might be mediating such interaction. These data suggest that Vim expression in corneal epithelium is found in a cell population composed of highly motile cells with a Vim+ /Krt+ /ΔNp63α+ /Pax-6low /α6 integrin+ phenotype. J. Cell. Physiol. 232: 818-830, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Diferenciação Celular , Movimento Celular , Células Epiteliais/citologia , Epitélio Corneano/citologia , Vimentina/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Integrina alfa6/metabolismo , Queratinas/metabolismo , Mitomicina/farmacologia , Plectina/metabolismo , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , Coelhos , Proteínas Supressoras de Tumor/metabolismo
2.
Biomol Concepts ; 5(6): 457-78, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25429599

RESUMO

Latrophilins (LPHN) are part of a yet unexplored family of receptors comprising three isoforms, LPHN1-3, and belonging to a unique branch of G protein-coupled receptors (GPCR) named adhesion GPCR (aGPCR). LPHN are considered to be prototypical models for the study of aGPCR as they are one of the most evolutionary conserved members. Previously described as the target for a potent neurotoxin from the black widow spider venom, LPHN are now being studied under a whole new perspective. Indeed, recent advances have provided a better understanding of different aspects of this prototypical family of receptors: 1) elucidation of LPHN ectodomain organization by crystallography has unveiled a new functional domain with great repercussion on all the other members of the aGPCR family, 2) proteomic approaches have opened the gate to unsuspected functional characteristics of LPHN cellular role, and 3) genetic approaches have provided hints into the physiological functions of LPHN in specific systems and organisms. Moreover, genomic linkage studies screening human patients from diverse genetic backgrounds have involved LPHN gene defects in human disorders such as attention-deficit hyperactivity disorder and cancer. In this review, we will provide a historical perspective addressing experimental research on these receptors while highlighting the new advances and discoveries concerning LPHN functions. As GPCR still represent the most studied targets for the development of pharmacological approaches aiming at alleviating human disorders, the relevance of studying LPHN retains a high pertinence to better understand these receptors for the treatment of human diseases.


Assuntos
Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Neoplasias/metabolismo , Especificidade de Órgãos , Fosforilação , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Venenos de Aranha/metabolismo , Sinapses/metabolismo , Terminologia como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...