Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anaerobe ; 83: 102782, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37717850

RESUMO

OBJECTIVES: This study evaluated the effect of particle size and dosage of granular activated carbon (GAC) on methane production from the anaerobic digestion of raw effluent (RE) of swine wastewater, and the solid (SF) and liquid (LF) fractions. The effect of temperature using the selected size and dosage of GAC was also evaluated. METHODS: 60 mL of swine wastewater were inoculated with anaerobic granular sludge and GAC at different dosages and particle size. The cultures were incubated at different temperatures at 130 rpm. The kinetic parameters from experimental data were obtained using the Gompertz model. RESULTS: The cultures with the LF and GAC (75-150 µm, 15 g/L) increased 1.87-fold the methane production compared to the control without GAC. The GAC at 75-150 µm showed lower lag phases and higher Rmax than the cultures with GAC at 590-600 µm. The cumulative methane production at 45 °C with the RE + GAC was 7.4-fold higher than the control. Moreover, methane production at 45 °C significantly increased with the cultures LF + GAC (6.0-fold) and SF + GAC (2.0-fold). The highest production of volatile fatty acids and ammonium was obtained at 45 °C regardless of the substrate and the addition of GAC contributed to a higher extent than the cultures lacking GAC. In most cases, the kinetic parameters at 30 °C and 37 °C were also higher with GAC. CONCLUSIONS: GAC contributed to improving the fermentative and methanogenesis stages during the anaerobic digestion of fractions, evidenced by an improvement in the kinetic parameters.


Assuntos
Carvão Vegetal , Águas Residuárias , Animais , Suínos , Anaerobiose , Temperatura , Reatores Biológicos , Metano
2.
Environ Sci Pollut Res Int ; 28(26): 34355-34366, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33650048

RESUMO

Environmental arsenic exposure in adults and children has been associated with a reduction in the expression of club cell secretory protein (CC16) and an increase in the expression of matrix metalloproteinase-9 (MMP-9), both biomarkers of lung inflammation and negative respiratory outcomes. The objectives of this study were to determine if the levels of serum CC16 and MMP-9 and subsequent respiratory infections in children are associated with the ingestion of arsenic by drinking water. This cross-sectional study included 216 children from three Yaqui villages, Potam, Vicam, and Cocorit, with levels of arsenic in their ground water of 70.01 ± 21.85, 23.3 ± 9.99, and 11.8 ± 4.42 µg/L respectively. Total arsenic in water and urine samples was determined by inductively coupled plasma/optical emission spectrometry. Serum was analyzed for CC16 and MMP-9 using ELISA. The children had an average urinary arsenic of 79.39 µg/L and 46.8 % had levels above of the national concern value of 50 µg/L. Increased arsenic concentrations in drinking water and average daily arsenic intake by water were associated with decreased serum CC16 levels (ß = - 0.12, 95% CI - 0.20, - 0.04 and ß = - 0.10, 95% CI - 0.18, - 0.03), and increased serum MMP-9 levels (ß = 0.35, 95% CI 0.22, 0.48 and ß = 0.29, 95% CI 0.18, 0.40) at significant levels (P < 0.05). However, no association was found between levels of these serum biomarkers and urinary arsenic concentrations. In these children, reduced serum CC16 levels were significantly associated with increased risk of respiratory infections (OR = 0.34, 95% CI 0.13, 0.90). In conclusion, altered levels of serum CC16 and MMP-9 in the children may be due to the toxic effects of arsenic exposure through drinking water.


Assuntos
Arsênio , Água Potável , Poluentes Químicos da Água , Adulto , Arsênio/análise , Biomarcadores , Criança , Estudos Transversais , Água Potável/análise , Exposição Ambiental/análise , Humanos , Inflamação , México
3.
Chemosphere ; 221: 219-225, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30640004

RESUMO

Geobacter sulfurreducens and anthraquinone-2-sulfonate (AQS) were used suspended and immobilized in barium alginate during the biotransformation of 4-nitrophenol (4-NP). The assays were conducted at different concentrations of 4-NP (50-400 mg/L) and AQS, either in suspended (0-400 µM) or immobilized form (0 or 760 µM), and under different pH values (5-9). G. sulfurreducens showed low capacity to reduce 4-NP in absence of AQS, especially at the highest concentrations of the contaminant. AQS improved the reduction rates from 0.0086 h-1, without AQS, to 0.149 h-1 at 400 µM AQS, which represent an increment of 17.3-fold. The co-immobilization of AQS and G. sulfurreducens in barium alginate beads (AQSi-Gi) increased the reduction rates up to 4.8- and 7.2-fold, compared to incubations with G. sulfurreducens in suspended and immobilized form, but in absence of AQS. AQSi-Gi provides to G. sulfurreducens a barrier against the possibly inhibiting effects of 4-NP.


Assuntos
Alginatos/química , Antraquinonas/química , Biotransformação , Geobacter/metabolismo , Nitrofenóis/química , Concentração de Íons de Hidrogênio , Oxirredução
4.
J Environ Manage ; 183: 84-89, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27576150

RESUMO

The rate-limiting step of azo dye decolorization was elucidated by exploring the microbial reduction of a model quinone and the chemical decolorization by previously reduced quinone at different salinity conditions (2-8%). Microbial experiments were performed in batch with a marine consortium. The decolorization of Direct Blue 71 (DB71) by the marine consortium at 2% salinity, mediated with anthraquinone-2,6-disulfonate (AQDS), showed the highest rate of decolorization as compared with those obtained with riboflavin, and two samples of humic acids. Moreover, the incubations at different salinity conditions (0-8%) performed with AQDS showed that the highest rate of decolorization of DB71 by the marine consortium occurred at 2% and 4% salinity. In addition, the highest microbial reduction rate of AQDS occurred in incubations at 0%, 2%, and 4% of salinity. The chemical reduction of DB71 by reduced AQDS occurred in two stages and proceeded faster at 4% and 6% salinity. The results indicate that the rate-limiting step during azo decolorization was the microbial reduction of AQDS.


Assuntos
Antraquinonas/metabolismo , Compostos Azo/metabolismo , Corantes/metabolismo , Água do Mar/microbiologia , Substâncias Húmicas , Cinética , Oxirredução , Riboflavina/metabolismo , Salinidade
5.
J Basic Microbiol ; 55(2): 180-5, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25418931

RESUMO

The simultaneous removal of sulfide and p-cresol was carried out by using a marine-denitrifying consortium collected in the coastal zone of Sonora, Mexico. Different experimental conditions were used to evaluate the capacity of the consortium to simultaneously eliminate nitrate, sulfide, and p-cresol. For instance, the first set of assays was conducted at different sulfide concentrations (20, 50, and 100 mg S(2À) L(À1) ), with a fixed concentration of p-cresol (45 mg C L(À1) ). The second set of assays was developed at different concentrations of p-cresol (45, 75, and 100 mg C L(-1) ), in the presence of 20 mg S(2À) L(À1) . In all cases, the concentration of nitrate was stoichiometrically added for the complete oxidization of the substrates. The results showed removal efficiencies up to 92% for p-cresol and nitrate at 20 and 50 mg S(2À) L(À1) ; whereas at 100 mg S(2À) L(À1) removal efficiencies were 77% and 59% for p-cresol and nitrate, respectively. On the other hand, sulfide (20 mg L(À1) ) was completely removed under different concentrations of p-cresol tested, with a partial accumulation of nitrite according to the increment of p-cresol concentration. The results obtained indicate that the marine consortium was able to simultaneously remove the pollutants studied.


Assuntos
Cresóis/metabolismo , Desnitrificação , Sedimentos Geológicos/microbiologia , Consórcios Microbianos/fisiologia , Nitratos/metabolismo , Sulfetos/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , México , Nitrato Redutase/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Oxirredução
6.
J Ind Microbiol Biotechnol ; 36(11): 1417-24, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19672641

RESUMO

The aim of this study was to evaluate the capacity of a denitrifying consortium to achieve the simultaneous removal of nitrate, sulfide and p-cresol and elucidate the rate-limiting steps in the mixotrophic process. Nitrite reduction appeared as the most evident rate-limiting step in the denitrifying respiratory process. The nitrite reduction rate achieved was up to 57 times lower than the nitrate reduction rate during the simultaneous removal of sulfide and p-cresol. Negligible accumulation of N(2)O occurred in the denitrifying cultures corroborating that nitrite reduction was the main rate-limiting step of the respiratory process. A synergistic effect of nitrate and sulfide is proposed to explain the accumulation of nitrite. The study also points at the oxidation of S(0) as another rate-limiting step in the denitrifying process. Different respiratory rates were achieved with the distinct electron donors provided (p-cresol and sulfide). The oxidation rate of p-cresol (q(CRES)) was generally higher (up to 2.6-fold in terms of reducing equivalents) than the sulfide oxidation rate (q(S2-)), except for the experiments performed at 100 mg S(2-) L(-1) in which q(S2-) was slightly (approximately 1.4-fold in terms of reducing equivalents) higher than q(CRES). The present study provides kinetic information, which should be considered when designing and operating denitrifying reactors to treat industrial wastewaters containing large amounts of sulfurous, nitrogenous and phenolic contaminants such as those generated from petrochemical refineries.


Assuntos
Reatores Biológicos/microbiologia , Cresóis/metabolismo , Nitratos/metabolismo , Sulfetos/metabolismo , Microbiologia da Água , Cinética , Nitritos/metabolismo , Oxirredução , Enxofre/metabolismo , Poluentes da Água/metabolismo
7.
Water Sci Technol ; 59(10): 1945-50, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19474488

RESUMO

The catalytic effects of different quinoid redox mediators (RM) on the simultaneous removal of sulphide and p-cresol in a denitrifying process were evaluated in batch studies. 2-Hydroxy-1,4-naphthoquinone (LAW) and anthraquinone-2,6-disulphonate (AQDS) did not significantly affect the sulphide oxidation rate, which, in contrast, was increased 14% in the presence of 1,2-naphthoquinone-4-sulphonate (NQS). The input of NQS on the oxidation of sulphide was also favourably reflected in a 13% higher sulphate production. All RM promoted a higher (up to 34% compared to the control lacking RM) degree of mineralization of p-cresol. LAW also supported a 47% higher denitrifying yield (Y(N2)), compared to the control lacking quinones. Nevertheless, AQDS and NQS decreased the Y(N2) by 12-13%. Our results suggest that a proper scrutiny should be conducted before deciding the sort of quinone to be applied in denitrifying processes. The heterogeneous effects observed also advise to consider both the respiratory rates and the yields as important parameters for deciphering the impact of RM on denitrifying processes.


Assuntos
Antraquinonas/química , Cresóis/isolamento & purificação , Naftoquinonas/química , Esgotos , Sulfetos/isolamento & purificação , Purificação da Água/métodos , Anaerobiose , Cinética , Nitratos/análise , Oxirredução , Consumo de Oxigênio , Quinonas/química , Sulfatos/análise , Sulfetos/química , Ácidos Sulfônicos/química
8.
Biodegradation ; 19(2): 235-46, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17534721

RESUMO

The capacity of two anaerobic consortia to oxidize different organic compounds, including acetate, propionate, lactate, phenol and p-cresol, in the presence of nitrate, sulfate and the humic model compound, anthraquinone-2,6-disulfonate (AQDS) as terminal electron acceptors, was evaluated. Denitrification showed the highest respiratory rates in both consortia studied and occurred exclusively during the first hours of incubation for most organic substrates degraded. Reduction of AQDS and sulfate generally started after complete denitrification, or even occurred at the same time during the biodegradation of p-cresol, in anaerobic sludge incubations; whereas methanogenesis did not significantly occur during the reduction of nitrate, sulfate, and AQDS. AQDS reduction was the preferred respiratory pathway over sulfate reduction and methanogenesis during the anaerobic oxidation of most organic substrates by the anaerobic sludge studied. In contrast, sulfate reduction out-competed AQDS reduction during incubations performed with anaerobic wetland sediment, which did not achieve any methanogenic activity. Propionate was a poor electron donor to achieve AQDS reduction; however, denitrifying and sulfate-reducing activities carried out by both consortia promoted the reduction of AQDS via acetate accumulated from propionate oxidation. Our results suggest that microbial reduction of humic substances (HS) may play an important role during the anaerobic oxidation of organic pollutants in anaerobic environments despite the presence of alternative electron acceptors, such as sulfate and nitrate. Methane inhibition, imposed by the inclusion of AQDS as terminal electron acceptor, suggests that microbial reduction of HS may also have important implications on the global climate preservation, considering the green-house effects of methane.


Assuntos
Bactérias Anaeróbias/metabolismo , Benzoquinonas/metabolismo , Biodegradação Ambiental , Compostos Orgânicos/metabolismo , Eliminação de Resíduos Líquidos , Ecologia , Resíduos Industriais , Oxirredução , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...