Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 36(20): e9360, 2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-35869640

RESUMO

RATIONALE: Ion mobility spectrometry (IMS) detects illegal substances and explosives in airports, ports, and customs. This is complicated by false positives caused by overlapping peaks. Shift reagents selectively change ion mobilities through adduction with analyte ions. This discriminates false positives because interferents and illegal substances respond differently to shift reagents. METHODS: We introduced five different shift reagents using electrospray ionization-IMS-mass spectrometry to study the effect of interaction energy, intermolecular bonds, and analyte size on ion mobility shifts. Analyte ion-shift reagent interactions were calculated using Gaussian. RESULTS: The mobility shifts showed a decreasing trend as the molecular weight increased for a series of ten compounds. The shift in drift time better reflected the pure effect of shift reagents. Valinol was an exception to this trend because it had a low binding energy interaction with all shift reagents and, consequently, its clusters were short-lived. This produced fewer collisions against the buffer gas and a shorter drift time, compared to ions of similar molecular weight. CONCLUSIONS: The results of this investigation are important for understanding the behavior of shift reagents in resolving overlapping peaks that cause interferences. The suppression of false positives eases the transit of passengers and cargos, increases the confiscation of illicit substances, and saves money and distress due to needless delays in customs and airports.


Assuntos
Espectrometria de Mobilidade Iônica , Espectrometria de Massas por Ionização por Electrospray , Indicadores e Reagentes , Íons/química , Espectrometria de Massas por Ionização por Electrospray/métodos
2.
J Mass Spectrom ; 52(12): 823-829, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28877381

RESUMO

Ion mobility spectrometry (IMS) is an analytical technique that separates gas-phase ions drifting under an electric field according to their size to charge ratio. We used electrospray ionization-drift tube IMS coupled to quadrupole mass spectrometry to measure the mobilities of glucosamine (GH+ ) and caffeine (CH+ ) ions in pure nitrogen or when the shift reagent (SR) 2-butanol was introduced in the drift gas at 6.9 mmol m-3 . Binding energies of 2-butanol-ion adducts were calculated using Gaussian 09 at the CAMB3LYP/6-311++G(d,p) level of theory. The mobility shifts with the introduction of 2-butanol in the drift gas were -2.4% (GH+ ) and -1.7% (CH+ ) and were due to clustering of GH+ and CH+ with 2-butanol. The formation of GBH+ was favored over that of CBH+ because GBH+ formed more stable hydrogen bonds (83.3 kJ/mol) than CBH+ (81.7 kJ/mol) for the reason that the positive charge on CH+ is less sterically available than on GH+ and the charge is stabilized by resonance in CH+ . These results are a confirmation of the arguments used to explain the drift behavior of these ions when ethyl lactate SR was used (Bull Kor Chem Soc 2014, 1023-1028). This study is a step forward to predict IMS separations of overlapping peaks in IMS spectra, simplifying a procedure that is trial and error by now.


Assuntos
Butanóis/química , Cafeína/análise , Glucosamina/análise , Espectrometria de Mobilidade Iônica/métodos , Gases/química , Íons/química , Modelos Moleculares , Nitrogênio/química , Termodinâmica
3.
Rapid Commun Mass Spectrom ; 30(11): 1332-8, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27173115

RESUMO

RATIONALE: When dopants are introduced into the buffer gas of an ion mobility spectrometer, spectra are simplified due to charge competition. METHODS: We used electrospray ionization to inject tetrahydrofuran-2-carbonitrile (F, 2-furonitrile or 2-furancarbonitrile) as a buffer gas dopant into an ion mobility spectrometer coupled to a quadrupole mass spectrometer. Density functional theory was used for theoretical calculations of dopant-ion interaction energies and proton affinities, using the hybrid functional X3LYP/6-311++(d,p) with the Gaussian 09 program that accounts for the basis set superposition error; analytes structures and theoretical calculations with Gaussian were used to explain the behavior of the analytes upon interaction with F. RESULTS: When F was used as a dopant at concentrations below 1.5 mmol m(-3) in the buffer gas, ions were not observed for α-amino acids due to charge competition with the dopant; this deprotonation capability arises from the production of a dimer with a high formation energy that stabilized the positive charge and created steric hindrance that deterred the equilibrium with analyte ions. F could not completely strip other compounds of their charge because they either showed steric hindrance at the charge site that deterred the approach of the dopant (2,4-lutidine, and DTBP), formed intramolecular bonds that stabilized the positive charge (atenolol), had high proton affinity (2,4-lutidine, DTBP, valinol and atenolol), or were inherently ionic (tetraalkylammonium ions). CONCLUSIONS: This selective deprotonation suggests the use of F to simplify spectra of complex mixtures in ion mobility and mass spectrometry in metabolomics, proteomics and other studies that generate complex spectra with thousands of peaks. Copyright © 2016 John Wiley & Sons, Ltd.

4.
J Mass Spectrom ; 51(5): 378-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27194523

RESUMO

Overlapping peaks interfere in ion mobility spectrometry (IMS), but they are separated introducing mobility shift reagents (SR) in the buffer gas forming adducts with different collision cross-sections (size). IMS separations using SR depend on the ion mobility shifts which are governed by adduct's size and interaction energies (stabilities). Mobility shifts of valinol and ethanolamine ions were measured by electrospray-ionization ion mobility-mass spectrometry (MS). Methyl-chloro propionate (M) was used as SR; 2-butanol (B) and nitrobenzene (N) were used for comparison. Density functional theory was used for calculations. B produced the smallest mobility shifts because of its small size. M and N have two strong interaction sites (oxygen atoms) and similar molecular mass, and they should produce similar shifts. For both ethanolamine and valinol ions, stabilities were larger for N adducts than those of M. With ethanolamine, M produced a 68% shift, large compared to that using N, 61%, because M has a third weak interaction site on the chlorine atom and, therefore, M has more interaction possibilities than N. This third site overrode the oxygen atoms' interaction energy that favored the adduction of ethanolamine with N over that with M. On the contrary, with valinol mobility shifts were larger with N than with M (21 vs 18%) because interaction energy favored even more adduction of valinol with N than with M; that is, the interaction energy difference between adducts of valinol with M and N was larger than that between those adducts with ethanolamine, and the third M interaction could not override this larger difference. Mobility shifts were explained based on the number of SR's interaction sites, size of ions and SR, and SR-ion interaction energies. This is the first time that the number of interaction sites is used to explain mobility shifts in SR-assisted IMS. Copyright © 2016 John Wiley & Sons, Ltd.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...