Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(26): 18161-18171, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38916483

RESUMO

Inorganic ternary metal-C-N compounds with covalently bonded C-N anions encompass important classes of solids such as cyanides and carbodiimides, well known at ambient conditions and composed of [CN]- and [CN2]2- anions, as well as the high-pressure formed guanidinates featuring [CN3]5- anion. At still higher pressures, carbon is expected to be 4-fold coordinated by nitrogen atoms, but hitherto, such CN4-built anions are missing. In this study, four polycarbonitride compounds (LaCN3, TbCN3, CeCN5, and TbCN5) are synthesized in laser-heated diamond anvil cells at pressures between 90 and 111 GPa. Synchrotron single-crystal X-ray diffraction (SCXRD) reveals that their crystal structures are built of a previously unobserved anionic single-bonded carbon-nitrogen three-dimensional (3D) framework consisting of CN4 tetrahedra connected via di- or oligo-nitrogen linkers. A crystal-chemical analysis demonstrates that these polycarbonitride compounds have similarities to lanthanide silicon phosphides. Decompression experiments reveal the existence of LaCN3 and CeCN5 compounds over a very large pressure range. Density functional theory (DFT) supports these discoveries and provides further insight into the stability and physical properties of the synthesized compounds.

2.
Nanoscale ; 16(18): 9096-9107, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38646807

RESUMO

Hexagonal boron nitride (hBN) and black phosphorus (bP) are crystalline materials that can be seen as ordered stackings of two-dimensional layers, which lead to outstanding anisotropic physical properties. Knowledge of the thermal equations of state of hBN and bP is of great interest in the field of 2D materials for a better understanding of their anisotropic thermo-mechanical properties and exfoliation mechanism towards the preparation of important single-layer materials like hexagonal boron nitride nanosheets and phosphorene. Despite several theoretical and experimental studies, important uncertainties remain in the determination of the thermoelastic parameters of hBN and bP. Here, we report accurate thermal expansion and compressibility measurements along the individual crystallographic axes, using in situ high-temperature and high-pressure high-resolution synchrotron X-ray diffraction. In particular, we have quantitatively determined the subtle variations of the in-plane and volumetric thermal expansion coefficients and compressibility parameters by subjecting these materials to hydrostatic conditions and by collecting a large number of data points in small pressure and temperature increments. In addition, based on the anisotropic behavior of bP, we propose the use of this material as a sensor for the simultaneous determination of pressure and temperature in the range of 0-5 GPa and 298-1700 K, respectively.

3.
Inorg Chem ; 63(11): 4875-4882, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38412505

RESUMO

The reaction between PrO2 and SiO2 was investigated at various pressure points up to 29 GPa in a diamond anvil cell using laser heating and in situ single-crystal structure analysis. The pressure points at 5 and 10 GPa produced Pr2III(Si2O7), whereas Pr4IIISi3O12 and Pr2IV(O2)O3 were obtained at 15 GPa. Pr4IIISi3O12 can be interpreted as a high-pressure modification of the still unknown orthosilicate Pr4III(SiO4)3. PrIVSi3O8 and Pr2IVSi7O18 that contain praseodymium in its rare + IV oxidation state were identified at 29 GPa. After the pressure was released from the reaction chamber, the Pr(IV) silicates could be recovered, indicating that they are metastable at ambient pressure. Density functional theory calculations of the electronic structure corroborate the oxidation state of praseodymium in both PrIVSi3O8 and Pr2IVSi7O18. Both silicates are the first structurally characterized representatives of Pr4+-containing salts with oxoanions. All three silicates contain condensed networks of [SiO6] octahedra which is unprecedented in the rich chemistry of lanthanoid silicates.

4.
Angew Chem Int Ed Engl ; 63(11): e202319278, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38156778

RESUMO

A chemical reaction between Sb and N2 was induced under high-pressure (32-35 GPa) and high-temperature (1600-2200 K) conditions, generated by a laser heated diamond anvil cell. The reaction product was identified by single crystal synchrotron X-ray diffraction at 35 GPa and room temperature as crystalline antimony nitride with Sb3 N5 stoichiometry and structure belonging to orthorhombic space group Cmc21 . Only Sb-N bonds are present in the covalent bonding framework, with two types of Sb atoms respectively forming SbN6 distorted octahedra and trigonal prisms and three types of N atoms forming NSb4 distorted tetrahedra and NSb3 trigonal pyramids. Taking into account two longer Sb-N distances, the SbN6 trigonal prisms can be depicted as SbN8 square antiprisms and the NSb3 trigonal pyramids as NSb4 distorted tetrahedra. The Sb3 N5 structure can be described as an ordered stacking in the bc plane of bi- layers of SbN6 octahedra alternated to monolayers of SbN6 trigonal prisms (SbN8 square antiprisms). The discovery of Sb3 N5 finally represents the long sought-after experimental evidence for Sb to form a crystalline nitride, providing new insights about fundamental aspects of pnictogens chemistry and opening new perspectives for the high-pressure chemistry of pnictogen nitrides and the synthesis of an entire class of new materials.

5.
Angew Chem Int Ed Engl ; 63(7): e202318214, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38100520

RESUMO

The elements hydrogen, carbon, and nitrogen are among the most abundant in the solar system. Still, little is known about the ternary compounds these elements can form under the high-pressure and high-temperature conditions found in the outer planets' interiors. These materials are also of significant research interest since they are predicted to feature many desirable properties such as high thermal conductivity and hardness due to strong covalent bonding networks. In this study, the high-pressure high-temperature reaction behavior of malononitrile H2 C(CN)2 , dicyandiamide (H2 N)2 C=NCN, and melamine (C3 N3 )(NH2 )3 was investigated in laser-heated diamond anvil cells. Two previously unknown compounds, namely α-C(NH)2 and ß-C(NH)2 , have been synthesized and found to have fully sp3 -hybridized carbon atoms. α-C(NH)2 crystallizes in a distorted ß-cristobalite structure, while ß-C(NH)2 is built from previously unknown imide-bridged 2,4,6,8,9,10-hexaazaadamantane units, which form two independent interpenetrating diamond-like networks. Their stability domains and compressibility were studied, for which supporting density functional theory calculations were performed.

6.
Angew Chem Int Ed Engl ; 62(47): e202311519, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37776234

RESUMO

The stabilization of nitrogen-rich phases presents a significant chemical challenge due to the inherent stability of the dinitrogen molecule. This stabilization can be achieved by utilizing strong covalent bonds in complex anions with carbon, such as cyanide CN- and NCN2- carbodiimide, while more nitrogen-rich carbonitrides are hitherto unknown. Following a rational chemical design approach, we synthesized antimony guanidinate SbCN3 at pressures of 32-38 GPa using various synthetic routes in laser-heated diamond anvil cells. SbCN3 , which is isostructural to calcite CaCO3 , can be recovered under ambient conditions. Its structure contains the previously elusive guanidinate anion [CN3 ]5- , marking a fundamental milestone in carbonitride chemistry. The crystal structure of SbCN3 was solved and refined from synchrotron single-crystal X-ray diffraction data and was fully corroborated by theoretical calculations, which also predict that SbCN3 has a direct band gap with the value of 2.20 eV. This study opens a straightforward route to the entire new family of inorganic nitridocarbonates.

7.
J Chem Phys ; 159(8)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37610022

RESUMO

While polymeric carbon monoxide (pCO) has been experimentally found to remain amorphous and undecomposed at room temperature up to 50 GPa, the question of whether crystalline counterparts of it can be obtained naturally raises. From different computational studies, it can be inferred that either the crystallization of amorphous pCO (a-pCO) or its decomposition into a mixture of CxOy suboxides (x > y) or carbon and CO2 may occur. In this study, we report experimental investigations of the high temperature (700-4000 K) transformation of a-pCO in the 47-120 GPa pressure range, conducted by x-ray diffraction in laser heated diamond anvil cells. Our results show the formation of no crystalline phases other than CO2 phase V, thus indicating the decomposition of the pristine a-pCO into CO2 and, likely, a mixture of amorphous CxOy suboxides and amorphous carbon hardly detectable at extreme conditions. These results support the theoretical picture of the pCO decomposition. We also show that the pressure-temperature kinetic border for this decomposition is very steep, thus indicating a strongly pressure-dependent kinetic barrier.

8.
Commun Phys ; 6(1): 82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124119

RESUMO

The Extremely Brilliant Source (EBS) is the experimental implementation of the novel Hybrid Multi Bend Achromat (HMBA) storage ring magnetic lattice concept, which has been realised at European Synchrotron Radiation Facility. We present its successful commissioning and first operation. We highlight the strengths of the HMBA design and compare them to the previous designs, on which most operational synchrotron X-ray sources are based. We report on the EBS storage ring's significantly improved horizontal electron beam emittance and other key beam parameters. EBS extends the reach of synchrotron X-ray science confirming the HMBA concept for future facility upgrades and new constructions.

9.
J Phys Condens Matter ; 35(5)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36541495

RESUMO

Highly brilliant synchrotron source is indispensable to track pressure-induced phenomena in confined crystalline samples in megabar range. In this article, a number of experimental variables affecting the quality high-pressure single-crystal x-ray diffraction data is discussed. An overview of the recent advancements in x-ray diffraction techniques at extreme conditions, in the frame of European Synchrotron Radiation Facility (ESRF)- Extremely Bright Source (EBS), is presented. Particularly, ID15b and ID27 beamlines have profited from the source upgrade, allowing for measurements of a few-micron crystals in megabar range. In case of ID27, a whole new beamline has been devised, including installation of double-multilayer mirrors and double crystal monochromator and construction of custom-made experimental stations. Two case studies from ID27 and ID15b are presented. Hypervalent CsI3crystals, studied up to 24 GPa, have shown a series of phase transitions:Pnma → P-3c1→ Pm-3n. First transition leads to formation of orthogonal linear iodine chains made of I3-. Transformation to the cubic phase at around 21.7 GPa leads to equalization of interatomic I-I distances and formation of homoleptic Inm-chains. The second study investigates elastic properties and structure of jadarite, which undergoes isosymmetric phase transition around 16.6 GPa. Despite a few-micron crystal size, twinning and dramatic loss of crystal quality, associated with pressure-induced phase transitions, crystal structures of both compounds have been determined in a straightforward matter, thanks to the recent developments within ESRF-EBS.

10.
Inorg Chem ; 61(31): 12165-12180, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35881069

RESUMO

The direct chemical reactivity between phosphorus and nitrogen was induced under high-pressure and high-temperature conditions (9.1 GPa and 2000-2500 K), generated by a laser-heated diamond anvil cell and studied by synchrotron X-ray diffraction, Raman spectroscopy, and DFT calculations. α-P3N5 and γ-P3N5 were identified as reaction products. The structural parameters and vibrational frequencies of γ-P3N5 were characterized as a function of pressure during room-temperature compression and decompression to ambient conditions, determining the equation of state of the material up to 32.6 GPa and providing insight about the lattice dynamics of the unit cell during compression, which essentially proceeds through the rotation of the PN5 square pyramids and the distortion of the PN4 tetrahedra. Although the identification of α-P3N5 demonstrates for the first time the direct synthesis of this compound from the elements, its detection in the outer regions of the laser-heated area suggests α-P3N5 as an intermediate step in the progressive nitridation of phosphorus toward the formation of γ-P3N5 with increasing coordination number of P by N from 4 to 5. No evidence of a higher-pressure phase transition was observed, excluding the existence of predicted structures containing octahedrally hexacoordinated P atoms in the investigated pressure range.

11.
Inorg Chem ; 61(28): 10977-10985, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35792580

RESUMO

Structural evolution of cesium triiodide at high pressures has been revealed by synchrotron single-crystal X-ray diffraction. Cesium triiodide undergoes a first-order phase transition above 1.24(3) GPa from an orthorhombic to a trigonal system. This transition is coupled with severe reorganization of the polyiodide network from a layered to three-dimensional architecture. Quantum chemical calculations show that even though the two polymorphic phases are nearly isoenergetic under ambient conditions, the PV term is decisive in stabilizing the trigonal polymorph above the transition point. Phonon calculations using a non-local correlation functional that accounts for dispersion interactions confirm that this polymorph is dynamically unstable under ambient conditions. The high-pressure behavior of crystalline CsI3 can be correlated with other alkali metal trihalides, which undergo a similar sequence of structural changes upon load.

12.
Proc Natl Acad Sci U S A ; 119(30): e2203672119, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867827

RESUMO

Studies of dense carbon materials formed by bolide impacts or produced by laboratory compression provide key information on the high-pressure behavior of carbon and for identifying and designing unique structures for technological applications. However, a major obstacle to studying and designing these materials is an incomplete understanding of their fundamental structures. Here, we report the remarkable structural diversity of cubic/hexagonally (c/h) stacked diamond and their association with diamond-graphite nanocomposites containing sp3-/sp2-bonding patterns, i.e., diaphites, from hard carbon materials formed by shock impact of graphite in the Canyon Diablo iron meteorite. We show evidence for a range of intergrowth types and nanostructures containing unusually short (0.31 nm) graphene spacings and demonstrate that previously neglected or misinterpreted Raman bands can be associated with diaphite structures. Our study provides a structural understanding of the material known as lonsdaleite, previously described as hexagonal diamond, and extends this understanding to other natural and synthetic ultrahard carbon phases. The unique three-dimensional carbon architectures encountered in shock-formed samples can place constraints on the pressure-temperature conditions experienced during an impact and provide exceptional opportunities to engineer the properties of carbon nanocomposite materials and phase assemblages.

13.
Phys Rev Lett ; 128(16): 165701, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35522490

RESUMO

Structural transformation of hot dense water ice is investigated by combining synchrotron x-ray diffraction and a laser-heating diamond anvil cell above 25 GPa. A transition from the body-centered-cubic (bcc) to face-centered-cubic (fcc) oxygen atoms sublattices is observed from 57 GPa and 1500 K to 166 GPa and 2500 K. That is the structural signature of the transition to fcc superionic (fcc SI) ice. The sign of the density discontinuity at the transition is obtained and a phase diagram is disclosed, showing an extended fcc SI stability field. Present data also constrain the stability field of the bcc superionic (bcc SI) ice up to 100 GPa at least. The current understanding of warm dense water ice based on ab initio simulations is discussed in the light of present data.

14.
Angew Chem Int Ed Engl ; 61(6): e202114191, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34797602

RESUMO

Chemical reactivity between As and N2 , leading to the synthesis of crystalline arsenic nitride, is here reported under high pressure and high temperature conditions generated by laser heating in a diamond anvil cell. Single-crystal synchrotron X-ray diffraction at different pressures between 30 and 40 GPa provides evidence for the synthesis of a covalent compound of AsN stoichiometry, crystallizing in a cubic P21 3 space group, in which each of the two elements is single-bonded to three atoms of the other and hosts an electron lone pair, in a tetrahedral anisotropic coordination. The identification of characteristic structural motifs highlights the key role played by the directional repulsive interactions between non-bonding electron lone pairs in the formation of the AsN structure. Additional data indicate the existence of AsN at room temperature from 9.8 up to 50 GPa. Implications concern fundamental aspects of pnictogens chemistry and the synthesis of innovative advanced materials.

15.
J Geophys Res Solid Earth ; 127(11): e2022JB025117, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36590903

RESUMO

FeO represents an important end-member for planetary interiors mineralogy. However, its properties in the liquid state under high pressure are poorly constrained. Here, in situ high-pressure and high-temperature X-ray diffraction experiments, ab initio simulations, and thermodynamic calculations are combined to study the local structure and density evolution of liquid FeO under extreme conditions. Our results highlight a strong shortening of the Fe-Fe distance, particularly pronounced between ambient pressure and ∼40 GPa, possibly related with the insulator to metal transition occurring in solid FeO over a similar pressure range. Liquid density is smoothly evolving between 60 and 150 GPa from values calculated for magnetic liquid to those calculated for non-magnetic liquid, compatibly with a continuous spin crossover in liquid FeO. The present findings support the potential decorrelation between insulator/metal transition and the high-spin to low-spin continuous transition, and relate the changes in the microscopic structure with macroscopic properties, such as the closure of the Fe-FeO miscibility gap. Finally, these results are used to construct a parameterized thermal equation of state for liquid FeO providing densities up to pressure and temperature conditions expected at the Earth's core-mantle boundary.

16.
Rev Sci Instrum ; 92(9): 093906, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598485

RESUMO

We report a new technique for torsional testing of materials under giga-pascal pressures, which uses a shearing module in a large-volume Paris-Edinburgh press in combination with high-resolution fast radiographic x-ray imaging. The measurement of the relative amplitude and phase lag between the cyclic displacement in the sample and a standard material (Al2O3) provides the effective shear modulus and attenuation factor for the sample. The system can operate in the 0.001-0.01 Hz frequency range and up to 5 GPa and 2000 K although high-temperature measurements may be affected by grain growth and plastic strain. Preliminary experimental results on San Carlos olivine are in quantitative agreement with previously reported Q-1 factors at lower pressure. This cyclic torsional loading method opens new directions to quantify the viscoelastic properties of minerals/rocks at seismic frequencies and under pressure-temperature conditions relevant to the Earth's mantle for a better interpretation of seismological data.

17.
Nat Commun ; 12(1): 4311, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262043

RESUMO

Earth's deep carbon cycle affects atmospheric CO2, climate, and habitability. Owing to the extreme solubility of CaCO3, aqueous fluids released from the subducting slab could extract all carbon from the slab. However, recycling efficiency is estimated at only around 40%. Data from carbonate inclusions, petrology, and Mg isotope systematics indicate Ca2+ in carbonates is replaced by Mg2+ and other cations during subduction. Here we determined the solubility of dolomite [CaMg(CO3)2] and rhodochrosite (MnCO3), and put an upper limit on that of magnesite (MgCO3) under subduction zone conditions. Solubility decreases at least two orders of magnitude as carbonates become Mg-rich. This decreased solubility, coupled with heterogeneity of carbon and water subduction, may explain discrepancies in carbon recycling estimates. Over a range of slab settings, we find aqueous dissolution responsible for mobilizing 10 to 92% of slab carbon. Globally, aqueous fluids mobilise [Formula: see text]% ([Formula: see text] Mt/yr) of subducted carbon from subducting slabs.

18.
J Am Chem Soc ; 143(21): 7920-7924, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34008965

RESUMO

Ge and Sn are unreactive at ambient conditions. Their significant promise for optoelectronic applications is thus largely confined to thin film investigations. We sought to remove barriers to reactivity here by accessing a unique pressure, 10 GPa, where the two elements can adopt the same crystal structure (tetragonal, I41/amd) and exhibit compatible atomic radii. The route to GeSn solid solution, however, even under these directed conditions, is different. Reaction upon heating at 10 GPa occurs between unlike crystal structures (Ge, Fd3m and Sn, I4/mmm), which also have highly incompatible atomic radii. They should not react, but they do. A reconstructive transformation of I4/mmm into the I41/amd solid solution then follows. The new tetragonal GeSn solid solution (I41/amd a = 5.280(1) Å, c = 2.915(1) Å, Z = 4 at 9.9 GPa and 298 K) also constitutes the structural and electronic bridge between 4-fold and newly prepared 8-fold coordinated alloy cubic symmetries. Furthermore, using this high-pressure route, bulk cubic diamond-structured GeSn alloys can now be obtained at ambient pressure. The findings here remove confining conventional criteria on routes to synthesis. This opens innovative avenues to advanced materials development.

19.
Phys Rev Lett ; 126(6): 065701, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33635684

RESUMO

We present a study on the phase stability of dense carbon dioxide (CO_{2}) at extreme pressure-temperature conditions, up to 6200 K within the pressure range 37±9 to 106±17 GPa. The investigations of high-pressure high-temperature in situ x-ray diffraction patterns recorded from laser-heated CO_{2}, as densified in diamond-anvil cells, consistently reproduced the exclusive formation of polymeric tetragonal CO_{2}-V at any condition achieved in repetitive laser-heating cycles. Using well-considered experimental arrangements, which prevent reactions with metal components of the pressure cells, annealing through laser heating was extended individually up to approximately 40 min per cycle in order to keep track of upcoming instabilities and changes with time. The results clearly exclude any decomposition of CO_{2}-V into the elements as previously suggested. Alterations of the Bragg peak distribution on Debye-Scherrer rings indicate grain coarsening at temperatures >4000 K, giving a glimpse of the possible extension of the stability of the polymeric solid phase.

20.
Nat Commun ; 11(1): 6125, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257669

RESUMO

High pressure reactivity of phosphorus and hydrogen is relevant to fundamental chemistry, energy conversion and storage, and materials science. Here we report the synthesis of (PH3)2H2, a crystalline van der Waals (vdW) compound (I4cm) made of PH3 and H2 molecules, in a Diamond Anvil Cell by direct catalyst-free high pressure (1.2 GPa) and high temperature (T â‰² 1000 K) chemical reaction of black phosphorus and liquid hydrogen, followed by room T compression above 3.5 GPa. Group 15 elements were previously not known to form H2-containing vdW compounds of their molecular hydrides. The observation of (PH3)2H2, identified by synchrotron X-ray diffraction and vibrational spectroscopy (FTIR, Raman), therefore represents the discovery of a previously missing tile, specifically corresponding to P for pnictogens, in the ability of non-metallic elements to form such compounds. Significant chemical implications encompass reactivity of the elements under extreme conditions, with the observation of the P analogue of the Haber-Bosch reaction for N, fundamental bond theory, and predicted high pressure superconductivity in P-H systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...