Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(25): 250502, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036205

RESUMO

The resonator-induced phase (RIP) gate is an all-microwave multiqubit entangling gate that allows a high degree of flexibility in qubit frequencies, making it attractive for quantum operations in large-scale architectures. We experimentally realize the RIP gate with four superconducting qubits in a three-dimensional circuit-QED architecture, demonstrating high-fidelity controlled-z (cz) gates between all possible pairs of qubits from two different 4-qubit devices in pair subspaces. These qubits are arranged within a wide range of frequency detunings, up to as large as 1.8 GHz. We further show a dynamical multiqubit refocusing scheme in order to isolate out 2-qubit interactions, and combine them to generate a 4-qubit Greenberger-Horne-Zeilinger state.

2.
Nature ; 534(7606): 222-6, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279216

RESUMO

Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

3.
Sci Rep ; 6: 27836, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27324814

RESUMO

We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.

4.
Phys Rev Lett ; 115(24): 240502, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26705616

RESUMO

We propose a digital quantum simulator of non-Abelian pure-gauge models with a superconducting circuit setup. Within the framework of quantum link models, we build a minimal instance of a pure SU(2) gauge theory, using triangular plaquettes involving geometric frustration. This realization is the least demanding, in terms of quantum simulation resources, of a non-Abelian gauge dynamics. We present two superconducting architectures that can host the quantum simulation, estimating the requirements needed to run possible experiments. The proposal establishes a path to the experimental simulation of non-Abelian physics with solid-state quantum platforms.

5.
Sci Rep ; 5: 13153, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26278968

RESUMO

Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.

6.
Phys Rev Lett ; 114(7): 070502, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25763944

RESUMO

We propose an analog-digital quantum simulation of fermion-fermion scattering mediated by a continuum of bosonic modes within a circuit quantum electrodynamics scenario. This quantum technology naturally provides strong coupling of superconducting qubits with a continuum of electromagnetic modes in an open transmission line. In this way, we propose qubits to efficiently simulate fermionic modes via digital techniques, while we consider the continuum complexity of an open transmission line to simulate the continuum complexity of bosonic modes in quantum field theories. Therefore, we believe that the complexity-simulating-complexity concept should become a leading paradigm in any effort towards scalable quantum simulations.

7.
Sci Rep ; 4: 7482, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25500735

RESUMO

We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios.

8.
Phys Rev Lett ; 113(5): 050501, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25126905

RESUMO

The efficient implementation of many-body interactions in superconducting circuits allows for the realization of multipartite entanglement and topological codes, as well as the efficient simulation of highly correlated fermionic systems. We propose the engineering of fast multiqubit interactions with tunable transmon-resonator couplings. This dynamics is obtained by the modulation of magnetic fluxes threading superconducting quantum interference device loops embedded in the transmon devices. We consider the feasibility of the proposed implementation in a realistic scenario and discuss potential applications.

9.
Sci Rep ; 4: 3589, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24395054

RESUMO

Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.

10.
Phys Rev Lett ; 109(20): 200501, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23215466

RESUMO

We propose the implementation of the Holstein model by means of digital methods in a linear chain of trapped ions. We show how the simulation fidelity scales with the generation of phononic excitations. We propose a decomposition and a stepwise trapped-ion implementation of the Holstein Hamiltonian. Via numerical simulations, we study how the protocol is affected by realistic gates. Finally, we show how measurements of the size of the simulated polaron can be performed.

11.
Phys Rev Lett ; 108(19): 190502, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003013

RESUMO

We propose a method of simulating efficiently many-body interacting fermion lattice models in trapped ions, including highly nonlinear interactions in arbitrary spatial dimensions and for arbitrarily distant couplings. We map products of fermionic operators onto nonlocal spin operators and decompose the resulting dynamics in efficient steps with Trotter methods, yielding an overall protocol that employs only polynomial resources. The proposed scheme can be relevant in a variety of fields such as condensed-matter or high-energy physics, where quantum simulations may solve problems intractable for classical computers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...