Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276709

RESUMO

The development of nanotools for chemical sensing and macromolecular modifications is a new challenge in the biomedical field, with emphasis on artificial peptidases designed to cleave peptide bonds at specific sites. In this landscape, metal porphyrins are attractive due to their ability to form stable complexes with amino acids and to generate reactive oxygen species when irradiated by light of appropriate wavelengths. The issues of hydrophobic behavior and aggregation in aqueous environments of porphyrins can be solved by using its PEGylated derivatives. This work proposes the design of an artificial photo-protease agent based on a PEGylated mercury porphyrin, able to form a stable complex with l-Tryptophan, an amino acid present also in the lysozyme structure (a well-known protein model). The sensing and photodegradation features of PEGylated mercury porphyrin were exploited to detect and degrade both l-Trp and lysozyme using ROS, generated under green (532 nm) and red (650 nm) light lasers. The obtained system (Star3600_Hg) and its behavior as a photo-protease agent were studied by means of several spectroscopies (UV-Vis, fluorescence and circular dichroism), and MALDI-TOF mass spectrometry, showing the cleavage of lysozyme and the appearance of several short-chain residues. The approach of this study paves the way for potential applications in theranostics and targeted bio-medical therapies.

2.
Nanomaterials (Basel) ; 12(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35745331

RESUMO

Space exploration missions are currently becoming more frequent, due to the ambition for space colonization in sight of strengthening terrestrial technologies and extracting new raw materials and/or resources. In this field, the study of the materials' behaviour when exposed to space conditions is fundamental for enabling the use of currently existing materials or the development of new materials suitable for application in extra-terrestrial environments. In particular, the versatility of polymers renders them suitable for advanced applications, but the effects of space radiation on these materials are not yet fully understood. Here, to shed light on the effects of simulated solar wind on a polymeric material, polymethyl methacrylate (PMMA) was produced through radical bulk polymerization. The PMMA in the form of a thin film was subjected to proton beam bombardment at different fluences and in a high vacuum environment, with structural changes monitored through real-time FT-IR analysis. The structure of the residual material was investigated through MALDI-TOF mass spectrometry and 1H-NMR spectroscopy. The collected data allowed us to hypothesize the structural modifications of the PMMA and the related mechanisms.

3.
Chemosphere ; 303(Pt 1): 134988, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35595109

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are the most widespread xenobiotic pollutants in water and their abatement usually involves expensive and energy-consuming treatments. In this work, anthracene (AN) was selected as the recalcitrant model of PAHs and its solar light-stimulated heterogeneous photocatalytic abatement in aerated aqueous media was investigated using a new TiO2 derived thermoplastic nanocomposite in thin film form. The results were also compared with the benchmark TiO2 photocatalyst in slurry form. Finally, the possible contribution of reactive intermediates such as hydroxyl radical, AN radical cation and singlet oxygen, was investigated by using a hydroxyl radical trap and laser flash photolysis. Based on the obtained results, a feasible mechanism for AN photodegradation, which involves hydroxyl radical as the key oxidizing species is proposed.


Assuntos
Nanocompostos , Hidrocarbonetos Policíclicos Aromáticos , Antracenos , Radical Hidroxila , Luz , Fotólise , Água
4.
Nanomaterials (Basel) ; 12(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35335809

RESUMO

Among different depollution methods, photocatalysis activated by solar light is promising for terrestrial outdoor applications. However, its use in underground structures and/or microgravity environments (e.g., extraterrestrial structures) is forbidden. In these cases, there are issues related to the energy emitted from the indoor lighting system because it is not high enough to promote the photocatalytic mechanism. Moreover, microgravity does not allow the recovery of the photocatalytic slurry from the depolluted solution. In this work, the synthesis of a filmable nanocomposite based on semiconductor nanoparticles supported by photosensitized copolyacrylates was performed through a bulk in situ radical copolymerization involving a photosensitizer macromonomer. The macromonomer and the nanocomposites were characterized through UV-Vis, fluorescence and NMR spectroscopies, gel permeation chromatography and thermogravimetric analysis. The photocatalytic activity of the sensitized nanocomposites was studied through photodegradation tests of common dyes and recalcitrant xenobiotic pollutants, employing UV-Vis and visible range (λ > 390 nm) light radiations. The sensitized nanocomposite photocatalytic performances increased about two times that of the unsensitized nanocomposite and that of visible range light radiation alone (>390 nm). The experimental data have shown that these new systems, applied as thin films, have the potential for use in indoor deep underground and extraterrestrial structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...