Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-15, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38258445

RESUMO

Antimicrobial resistance threatens the efficacious prevention and treatment of infectious diseases caused by microorganisms. To combat microbial infections, the need for new drug candidates is essential. In this context, the design, synthesis, antimicrobial screening, and in silico study of a new series of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole (9a-t) have been reported. The structure of new compounds was confirmed by spectrometric methods. Compounds 9a-t were evaluated for in vitro antitubercular and antimicrobial activity. Against M. tuberculosis H37Rv, fourteen compounds showed good to excellent antitubercular activity with MIC 2.01-9.80 µM. Compounds 9a, 9b, and 9r showed four-fold more activity than the reference drug isoniazid. Nine compounds, 9a, 9b, 9d, 9e, 9i, 9q, 9r, 9s, and 9t, showed good antibacterial activity against E. coli with MIC 7.8-15.62 µg/mL. Against A. niger, four compounds showed good activity with MIC 31.25 µg/mL. Against C. albicans, all twenty compounds reported excellent to good activity with MIC 7.8-31.25 µg/mL. Compounds 9c-e, 9g-j, and 9q-t showed comparable activity concerning the reference drug fluconazole. The compounds 9a-t were screened for cytotoxicity against 3t3l1 cell lines and found to be less or non-cytotoxic. The in silico study exposed that these compounds displayed high affinity towards the M. tuberculosis targets PanK, DprE1, DHFR, PknA, KasA, and Pks13, and C. albicans targets NMT, CYP51, and CS. The compound 9r was evaluated for structural dynamics and molecular dynamics simulations. The potent antitubercular and antimicrobial activity of 5-aryl-3-(2-arylthiazol-4-yl)isoxazole (9a-t) derivatives has recommended that these compounds could assist in treating microbial infections.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 42(3): 1191-1207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37254438

RESUMO

A new series of 1-((1-(4-substituted benzyl)-1H-1,2,3-triazol-4-yl)methoxy)-2-(2-substituted quinolin-4-yl)propan-2-ol (9a-x) have been synthesized. The newly synthesized 1,2,3-triazolyl-quinolinyl-propan-2-ol (9a-x) derivatives were screened for in vitro antimicrobial activity against M. tuberculosis H37Rv, E. coli, P. mirabilis, B. subtilis, and S. albus. Most of the compounds showed good to moderate antibacterial activity and all derivatives have shown excellent to good antitubercular activity with MIC 0.8-12.5 µg/mL. To know the plausible mode of action for antibacterial activity the docking study against DNA gyrase from M. tuberculosis and S. aureus was investigated. The compounds have shown significant docking scores in the range of -9.532 to -7.087 and -9.543 to -6.621 Kcal/mol with the DNA gyrase enzyme of S. aureus (PDB ID: 2XCT) and M. tuberculosis (PDB ID: 5BS8), respectively. Against the S. aureus and M. tuberculosis H37Rv strains, the compound 9 l showed good activity with MIC values of 62.5 and 3.33 µM. It also showed significant docking scores in both targets with -8.291 and -8.885 Kcal/mol, respectively. Molecular dynamics was studied to investigate the structural and dynamics transitions at the atomistic level in S. aureus DNA gyrase (2XCT) and M. tuberculosis DNA gyrase (5BS8). The results revealed that the residues in the active binding pockets of the S. aureus and M. tuberculosis DNA gyrase proteins that interacted with compound 9 l remained relatively consistent throughout the MD simulations and thus, reflected the conformation stability of the respective complexes. Thus, the significant antimicrobial activity of derivatives 9a-x recommended that these compounds could assist in the development of lead compounds to treat for bacterial infections.Communicated by Ramaswamy H. Sarma.


Assuntos
Anti-Infecciosos , Mycobacterium tuberculosis , Tuberculose , Humanos , DNA Girase/metabolismo , Escherichia coli/metabolismo , Staphylococcus aureus , Simulação de Acoplamento Molecular , Anti-Infecciosos/farmacologia , Antituberculosos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Mycobacterium tuberculosis/metabolismo , 2-Propanol , Testes de Sensibilidade Microbiana
3.
ACS Omega ; 8(41): 37781-37797, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867649

RESUMO

Multidrug-resistant fungal infections have become much more common in recent years, especially in immune-compromised patients. Therefore, researchers and pharmaceutical professionals have focused on the development of novel antifungal agents that can tackle the problem of resistance. In continuation to this, a novel series of pyrazole-bearing pyrido[2,3-d]pyrimidine-2,4(1H,3H)-dione derivatives (4a-4o) have been developed. These compounds have been screened against Candida albicans, Aspergillus niger, and Aspergillus clavatus. The synthesized compounds were characterized by well-known spectroscopic techniques, i.e., IR, 1H NMR, 13C NMR, and mass spectrometry. In vitro antifungal results revealed that compound 4n showed activity against C. albicans having MIC value of 200 µg/mL. To know the plausible mode of action, the active derivatives were screened for anti-biofilm and ergosterol biosynthesis inhibition activities. The compounds 4h, 4j, 4k, and 4n showed greater ergosterol biosynthesis inhibition than the control DMSO. To comprehend how molecules interact with the receptor, studies of molecular docking of 4k and 4n have been performed on the homology-modeled protein of ß-tubulin. The molecular docking revealed that the active compounds 4h, 4j, 4k, 4l, and 4n interacting with the active site amino acid of sterol 14-alpha demethylase (PDB ID: 5v5z) indicate one of the possible modes of action of ergosterol inhibition activity. The synthesized compounds 4c, 4e, 4h, 4i, 4j, 4k, 4l, and 4n inhibited biofilm formation and possessed the potential for anti-biofilm activity. DFT-based quantum mechanical calculations were carried out to optimize, predict, and compare the vibration modes of the molecule 4a.

4.
Eur J Med Chem ; 258: 115548, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37307623

RESUMO

A new series of N-aryl-4-(1,3-diaryl-1H-pyrazol-4-yl)thiazol-2-amine, (8a-x) have been synthesized by a cyclo-condensation reaction of 2-bromo-1-(1,3-diphenyl-1H-pyrazol-4-yl)ethanone (6a-f) with N-aryl thiourea, (7a-d). The structure of newly synthesized N-aryl-4-(1,3-diaryl-1H-pyrazol-4-yl)thiazol-2-amine, (8a-x) derivatives was analyzed by 1H NMR, 13C NMR and Mass spectral analysis. The compounds 8a-x were screened for in vitro antimicrobial activity against Escherichia coli, Proteus mirabilis, Bacillus subtilis, Staphylococcus aureus, Candida albicans and Aspergillus niger. and antitubercular activity against M. tuberculosis H37Rv strain. Among the twenty-four pyrazolyl-thiazole derivatives, six compounds 8a, 8b, 8j, 8n, 8o and 8s showed good activity against S. aureus. Against A. niger, all synthesized derivatives showed good antifungal activity. Fifteen pyrazolyl-thiazole derivatives 8a, 8f, 8g, 8h, 8j, 8k, 8n, 8o, 8p, 8q, 8r, 8s, 8t, 8w and 8x showed good antitubercular activity with MIC 1.80-7.34 µM (0.8-3.12 µg/mL), these derivatives have showed more activity than the drugs isoniazid and ethambutol. The active compounds were further screened for cytotoxicity activity against the mouse embryonic fibroblast cells (3t3l1) cell lines at 12.5 and 25 µg/mL concentrations and found less or non-cytotoxicity. To know the plausible mode of action, the synthesized pyrazolyl-thiazole derivatives were studied for pharmacokinetics, toxicity profiles and binding interactions along with an in-depth analysis of structural dynamics and integrity using prolonged molecular dynamics (MD) simulation. The compounds have shown significant docking scores in the range of -7.98 to -5.52 and -9.44 to -7.2 kcal/mol with the M. tuberculosis enoyl reductase (M. tb. InhA) and C. albicans sterol 14-α demethylase (C. ab. CYP51), respectively. Thus, the significant antifungal and antitubercular activity of N-aryl-4-(1,3-diaryl-1H-pyrazol-4-yl)thiazol-2-amine, (8a-x) derivatives incited that, these scaffolds could assist in the development of lead compounds to treat fungal and antitubercular infections.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Antituberculosos/química , Antifúngicos/química , Relação Estrutura-Atividade , Staphylococcus aureus , Fibroblastos , Tiazóis , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Estrutura Molecular
5.
Chem Zvesti ; 77(7): 3791-3802, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252671

RESUMO

Resistance to antibiotic drugs has directed global health security to a life-threatening situation due to mycobacterial infections. In search of a new potent antimycobacterial, a series of (±) 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol (8a-p) have been synthesized. The structures of the newly synthesized derivatives were characterized by spectrometric analysis. Derivatives 8a-p were evaluated for antitubercular activity against Mycobacterium tuberculosis H37Rv (ATCC 25177), antibacterial activity against Proteus mirabilis (NCIM2388), Escherichia coli (NCIM 2065), Bacillus subtilis (NCIM2063) Staphylococcus albus (NCIM 2178) and antifungal activity against Candida albicans (NCIM 3100), Aspergillus niger (ATCC 504). Thirteen 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol (8a-m) derivatives reported moderate to good antitubercular activity against M. tuberculosis H37Rv with MIC 9.2-106.4 µM. Compounds 8a and 8h showed comparable activity with respect to the standard drug pyrazinamide. The active compounds screened for cytotoxicity activity against L929 mouse fibroblast cells showed no significant cytotoxic activity. Compounds 8c, 8d, 8e, 8g, 8k, and 8o displayed good activity against S. albus. Compounds 8c and 8n showed good activity against P. mirabilis and E. coli, respectively. The potential antimycobacterial activities imposed that the 2-(6-substituted quinolin-4-yl)-1-alkoxypropan-2-ol derivatives could lead to compounds that could treat tuberculosis. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-023-02741-3.

6.
Chem Biodivers ; 20(3): e202201017, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36808804

RESUMO

Fischer indole synthesis of indole by using phenyl-hydrazine and acetaldehyde resulted 1H-Indole while phenyl-hydrazine reacted with malonaldehyde gives 1H-Indole-3-carbaldehyde. Also Vilsmeier-Haack formylation of 1H-Indole gives 1H-Indole-3-carbaldehyde. 1H-Indole-3-carbaldehyde were oxidized to form 1H-Indole-3-carboxylic acid. 1H-Indole reacted with excess of BuLi at -78 °C using dry ice also gives 1H-Indole-3-carboxylic acid. Obtained 1H-Indole-3-carboxylic acid was converted to ester and ester in to acid hydrazide. Finally 1H-Indole-3-carboxylic acid hydrazide reacted with substituted carboxylic acid gives microbial active indole substituted oxadiazoles. Synthesized compounds 9a-j showing promising in vitro anti microbial activities against S. aureus bacteria compared with Streptomycin. Compound 9a, 9f and 9g showing activities against E. coli compared with standards. Compound 9a and 9f are found potent active against B. subtilis compared with reference standard while compound 9a, 9c and 9j active against S. typhi.


Assuntos
Escherichia coli , Staphylococcus aureus , Relação Estrutura-Atividade , Indóis/farmacologia , Testes de Sensibilidade Microbiana
7.
ACS Omega ; 7(50): 47096-47107, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570236

RESUMO

Microbial infections remain a grave threat to global health security due to increasing antibiotic resistance. The coronavirus pandemic has increased the risk of microbial infection. To combat these infections, the search for new therapeutic agents is in high demand. A series of new 3-(2-(3-(substituted benzyloxy)oxetan-3-yl)-3-fluorophenoxy)-8-fluoro-2-methylquinoline (9a-i) derivatives have been synthesized. The structure of synthesized compounds was analyzed by spectroscopic methods. The newly synthesized oxetanyl-quinoline derivatives were evaluated for in vitro antibacterial activity against Escherichia coli (NCIM 2574), Proteus mirabilis (NCIM 2388), Bacillus subtilis (NCIM 2063), Staphylococcus albus (NCIM 2178), and in vitro antifungal activity against Aspergillus niger (ATCC 504) and Candida albicans (NCIM 3100). Six oxetanyl-quinoline derivatives 9a, 9b, 9c, 9d, 9e, and 9h have shown good antibacterial activity against P. mirabilis with MIC 31.25-62.5 µM, 3-(((3-(2-fluoro-6-((8-fluoro-2-methylquinolin-3-yl)oxy)phenyl)oxetan-3-yl)oxy)methyl)benzonitrile (9f) reporting comparable activity against P. mirabilis with respect to the standard drug streptomycin. Compound 9a also showed good activity against B. subtilis with MIC 31.25 µM. The eight compounds 9a, 9b, 9d, 9e, 9f, 9g, 9h, and 9i have shown good antifungal activity against A. niger. The synthesized compounds were also screened for antimycobacterial activity against Mycobacterium tuberculosis H37Rv by MTT assay. Among the nine derivatives, compounds 9b, 9c, 9d, 9f, 9g, 9h, and 9i showed excellent antimycobacterial activity with MIC 3.41-12.23 µM, and two derivatives showed good activity with MIC 27.29-57.73 µM. All the derivatives were further evaluated for cytotoxicity against the Vero cell line and were found to be nontoxic. The in silico study of compounds 9a-i was performed against ATP synthase (PDB ID: 4V1F) and most of the compounds showed the stable and significant binding to ATP synthase, confirming their plausible mode of action as ATP synthase inhibitors. Thus, the significant antimycobacterial activity of 3-(2-(3-(substituted benzyloxy)oxetan-3-yl)-3-fluorophenoxy)-8-fluoro-2-methylquinoline derivatives has suggested that the oxatenyl-quinoline compounds could assist in the development of lead compounds to treat mycobacterial infections.

8.
Bioorg Chem ; 115: 105192, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34314920

RESUMO

To search for potent antimycobacterial lead compounds, a new series of 3-substituted phenyl-2-(2-(substituted phenyl)thiazol-4-yl) thiazolidin-4-one (5a-t) derivatives have been synthesized by the condensation of 2-substituted phenyl thiazole-4-carbaldehyde with aromatic amine followed by cyclocondensation with thioglycolic acid. The structure of the newly synthesized 2-(thiazol-4-yl)thiazolidin-4-one derivatives were characterized by the spectroscopic analysis. The synthesized compounds were screened for antimycobacterial activity against Mycobacterium tuberculosis H37Ra (MTB) (ATCC 25177) and Mycobacterium bovis BCG (BCG, ATCC 35743). Most of the 2-(thiazol-4-yl)thiazolidin-4-one derivatives showed good to excellent antimycobacterial activity against both the Mtb strains. Nine derivatives 5c, 5g, 5j, 5m, 5n, 5o, 5p, 5s, and 5t showed excellent activity against M. bovis BCG with MIC 4.43 to 24.04 µM were further evaluated for the cytotoxicity activity against HeLa A549, and HCT-116 cell lines and showed no significant cytotoxic activity at the maximum concentration evaluated. The potential antimycobacterial activities enforced that the thiazolyl-thiazolidin-4-one derivatives could lead to compounds that could treat tuberculosis.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Tiazóis/química , Tiazóis/farmacologia , Animais , Antituberculosos/síntese química , Linhagem Celular , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazóis/síntese química , Tuberculose/tratamento farmacológico , Tuberculose/veterinária
9.
Eur J Med Chem ; 179: 649-659, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31279297

RESUMO

A series of 1-substituted benzyl-4-[1-phenyl-3-(4-methyl-2-aryl-1,3-thiazol-5-yl)-1H-pyrazol-4-yl]-1H-1,2,3-triazole derivatives (7a-y) have been synthesized by click reaction of 5-(4-ethynyl-1-phenyl-1H-pyrazol-3-yl)-4-methyl-2-aryl-1,3-thiazole (5a-e) with substituted benzyl azide. The starting compounds 5-(4-ethynyl-1-phenyl-1H-pyrazol-3-yl)-4-methyl-2-aryl-1,3-thiazole (5a-e) were synthesized from corresponding 3-(4-methyl-2-aryl-1,3-thiazol-5-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde (3a-e) by using Ohira-Bestmann reagent. All newly synthesized thiazolyl-pyrazolyl-1,2,3-triazole derivatives were screened for antibacterial activity against two Gram negative strains, Escherichia coli (NCIM 2574), Proteus mirabilis (NCIM 2388), a Gram positive strain Staphylococcus albus (NCIM 2178) and in vitro antifungal activity against Candida albicans (NCIM 3100), Aspergillus niger (ATCC 504) and Rhodotorula glutinis (NCIM 3168). Ten thiazolyl-pyrazolyl-1,2,3-triazole derivatives, 7b, 7g, 7i, 7j, 7k, 7l, 7m, 7n, 7p and 7v exhibited promising antifungal activity against A. niger with MIC 31.5 µg/mL. Compounds 7g, 7i, 7k, 7l and 7m were further evaluated for ergosterol inhibition assay against A. niger cells sample at 31.5 µg/mL concentration. The analysis of sterol inhibition assay revealed that ergosterol biosynthesis is decreased in the fungal samples treated with azole derivatives. Promising antifungal activity suggested that, these compounds could be further promoted for optimization and development which could have the potential to treat against fungal infection.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus niger/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteus mirabilis/efeitos dos fármacos , Rhodotorula/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 29(10): 1199-1202, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30910461

RESUMO

Mycobacterium tuberculosis (Mtb) is an obligate aerobe that is capable of long-term persistence under conditions of low oxygen tension. A series of thiazolyl-pyrazole derivatives (6a-f, 7a-f, 8c, 8e) were screened for antimycobacterial activity against dormant M. tuberculosis H37Ra (D-MTB) and M. bovis BCG (D-BCG). Nine thiazolyl-pyrazole analogs, 6c, 6e, 7a, 7b, 7c, 7e, 7f, 8c and 8e exhibited promissing minimum inhibitory concentration (MIC) values (0.20-28.25 µg/mL) against D-MTB and D-BCG strains of Mtb. Importantly, six compounds (7a, 7b, 7e, 7f, 8c and 8e) exhibited excellent antimycobacterial activity and low cytotoxicity at the maximum evaluated concentration of >250 µg/mL. Finally, the promising antimycobacterial activity and lower cytotoxicity profile suggested that, these compounds could be further subjected for optimization and development as a lead, which could have the potential to treat tuberculosis.


Assuntos
Antibacterianos/química , Pirazóis/química , Antibacterianos/síntese química , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Pirazóis/farmacologia , Relação Estrutura-Atividade , Tiazóis/química
11.
Eur J Med Chem ; 132: 333-340, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28411559

RESUMO

In the present study a series of 4-methyl-2-aryl-5-(2-aryl/benzyl thiazol-4-yl) oxazole (4a-v) have been synthesized and evaluated for their preliminary antitubercular, antimicrobial and cytotoxicity activity. Among all the synthesized compounds, 4v reported comparable activity against dormant M. tuberculosis H37Ra and M. bovis BCG strains with respect to standard drug rifampicin. The active compounds from the antitubercular study were further tested for anti-proliferative activity against HeLa, A549 and PANC-1 cell lines using MTT assay and showed no significant cytotoxic activity at the maximum concentration evaluated. Further, the synthesized compounds were found to have potential antibacterial activities with MIC range of 2.1-26.8 µg/mL. High potency, lower cytotoxicity and promising antimycobacterial activity suggested that these compounds could serve as good leads for further optimisation and development.


Assuntos
Antibacterianos/farmacologia , Mycobacterium/efeitos dos fármacos , Oxazóis/farmacologia , Tiazóis/química , Antibacterianos/síntese química , Antibacterianos/toxicidade , Antituberculosos/síntese química , Antituberculosos/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Testes de Sensibilidade Microbiana , Oxazóis/síntese química , Oxazóis/toxicidade
12.
Eur J Med Chem ; 94: 340-7, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25778990

RESUMO

A series of 2'-aryl/benzyl-2-aryl-4-methyl-4',5-bithiazolyl derivatives, 25-64 were synthesized and evaluated for inhibitory activity against Mycobacterium smegmatis MC(2) 155 strain and antimicrobial activities against four pathogenic bacteria Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Proteus vulgaris. Among them, compounds 40, 49, 50, and 54 exhibited moderate to good inhibition on the growth of the bacteria Mycobacterium smegmatis at the concentration of 30 µM. Compounds 26, 40, 44, 54 and 56 exhibited moderate to good antibacterial activity. Compound 5-(2'-(4-fluorobenzyl)thiazol-4'-yl)-2-(4-fluorophenyl)-4-methyl-thiazole (54) exhibited both antitubercular as well as antimicrobial activity against all tested strains.


Assuntos
Antibacterianos/farmacologia , Tiazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium smegmatis/efeitos dos fármacos , Proteus vulgaris/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Tiazóis/síntese química , Tiazóis/química
13.
Bioorg Med Chem Lett ; 22(20): 6373-6, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22981329

RESUMO

A new series of 3-aryl-2-(2-aryl/benzyl-4-methylthiazole-5-yl)thiazolidin-4-one was synthesized by condensation of 2-aryl/benzyl-4-methylthiazole-5-carbaldehyde, aromatic amines and thioglycolic acid in toluene. All the synthesized compounds are characterized by IR, NMR and elemental or mass analysis. Sixteen out of the newly synthesized compounds were screened for in vivo anti-inflammatory activity using carrageenan-induced rat paw edema method. Some of the synthesized compounds exhibited good anti-inflammatory activity compared with indomethacin. The synthesized compounds were also evaluated for their in vitro antimicrobial activity. Some of the compounds showed mild antibacterial activity while most of the compounds showed good antifungal activity.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Tiazolidinas/química , Tiazolidinas/farmacologia , Animais , Anti-Infecciosos/síntese química , Anti-Inflamatórios/síntese química , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Carragenina , Edema/induzido quimicamente , Edema/tratamento farmacológico , Fungos/efeitos dos fármacos , Humanos , Indometacina/farmacologia , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Ratos , Tiazóis/síntese química , Tiazóis/química , Tiazóis/farmacologia , Tiazolidinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...